Non linear data structures-Trees ### Deliverables Tree basics Traversals Types of trees Tree Traversals Binary search tree #### Tree Technically tree is an abstract model of a hierarchical structure A tree consists of nodes with a parentchild relation Applications: Organization charts, File systems, Programming environments ### Tree terminology • Root: node without parent (A) Internal node: node with at least one child (A, B, C, F) • External node (or leaf node) or Node without children (E, I, J, K, G, H, D) - Ancestors of a node: parent, grandparent etc - Depth of a node: number of ancestors #### Tree basics Height of a tree: maximum depth of any node Descendant of a node: child, grandchild etc. Sub tree: tree consisting of a node and its descendants Siblings: Children of the same parent In degree: number of nodes arriving at that node Out degree: number of nodes leaving that node ### Tree operations size() isEmpty() root() parent(p) children(p) swapElements replaceElement isExternal(p) isInternal(p) isRoot(p) (p, o)(p, q) Search(x) Minimum() Maximum() Successor(x) Predecessor(x) #### Guess a number between 1 and n • First Guess 60 ### Guess a number between 1 and n • Second Guess 100 ### Guess a number between 1 and n How to play so that guesses are minimized ### Binary Tree Each internal node has at most two children Ordered Binary Tree or Binary Search Tree Children of node are ordered pair known as left, right child Left sub tree of node contains nodes with keys < node's key Right sub tree of node has nodes with keys ≥ node's key Both left and right subtrees must be binary search trees Recursive definition: Either a tree of single node, or whose root has an ordered pair of children, each is binary tree ## Complete Binary tree Complete Binary tree consists of each internal node having exactly two children. ### Full and Perfect Binary Tree Full binary tree has each level of tree completely filled(except possibly the last) in which nodes will be as left as possible Perfect binary tree will have each internal node having two children and all leaf nodes will be at the same level ### Full and Perfect Binary Tree ### Balanced and Degenerate Tree Balanced binary tree is a binary tree in which the height of two subtrees of every node never differ by more than 1 Degenerate tree: Where each parent has only one child ### Balanced and Degenerate Tree #### Few formulas ``` number of nodes n number of external nodes number of internal nodes height n = 2^{h+1} - 1 for perfect binary trees min: n = 2^h and max: n = 2^{h+1} - 1 for complete binary trees e= 2^h in a perfect binary tree Left most child is the smallest element of the BST and right most element is the largest element of the tree ``` ### Formulas for complete binary trees $$e = i + 1$$ $n = 2e - 1$ $h \le (n - 1)/2$ $e \le 2^{h}$ $h \ge \log_{2} e$ $h \ge \log_{2} (n + 1) - 1$ ### Converting a tree to binary tree ### Searching in a tree (Recursion) ``` Search(t, k) If t=null or k=t return t if k < x return Search(Left(t),k) else return Search(Right(t),k) ``` ### Searching in a tree (Iterative) ``` Search(t, k) While t \neq \text{null or } k \neq t if k < t t←Left(t) else t \leftarrow Right(t) return t ``` ### Complexity of search It will depend upon the height of the tree because with every loop iteration we are progressing to next level of the loop. Worst case: when we have a twig O(n) Average case: When tree is nearly complete O(logn) Best Case: O(1) Using a complex proof it is known that Expected height of a BST built from a random data is O(logn) ## Insert(T, k) ``` Insert(T, k) if Root(T) = null Root(T) = k else y \leftarrow Root(T) while y \neq null prev \leftarrow y if k<y y \leftarrow left(y) else y \leftarrow right(y) ``` ``` parent(k) ← prev If k < prev left(prev) ← x else right(prev) ← x ``` ### **Special Case** What if we need to insert a duplicate element Does the order of insertion matters: Yes, It will change the topology of the tree # Linked Representation #### Tree Traversal A traversal visits the nodes of a tree in a systematic manner DFS (Depth first search of a tree has three types Preorder, Postorder and Inorder) BFS (Breadth first search) of a tree is level wise #### Inorder traversal In inorder traversal, left node is visited before the root node and right node is visited after the root node Application: It gives data in sorted order in binary search trees InorderTraversal(x) If $x \neq null$ InorderTraversal(Left(x)) Print x // or any other work to be done on that node InorderTraversal(Right(x)) //Time Complexity $\theta(n)$ #### Non recursive inorder traversal To process a node: Follow left links until Null (push onto stack). Pop Print and process. Follow right link (push onto stack). | 6 | |----------| | 63 | | 631 | | 63 | | 6 | | 6 5
6 | | 6 | | - | | 10 | | 10 8 | | 10 | | - | | 14 | | - | #### **Preorder Traversal** ``` In preorder traversal, a node is visited before its descendants Application: print a structured document PreorderTraversal(x) If x \neq null print x PreorderTraversal(Left(x)) PreorderTraversal(Right(x)) ``` #### Preorder Traversal #### Postorder Traversal ``` In postorder traversal, a node is visited after its descendants Application: compute space used by files in a directory and its subdirectories, Evaluating arithmetic operation PostorderTraversal(x) If x \neq null PostorderTraversal(Left(x)) PostorderTraversal(Right(x)) print x ``` ### Postorder Traversal ### **BFS** Traversal ## Arithmetic expression trees | Infix | Postfix | Prefix | |-----------|-----------|-----------| | a*b | ab* | *ab | | a+b*c | abc*+ | +a*bc | | a+b*c/d-e | abc*d/+e- | -+a/*bcde | $$((2+2)+(2+2))+(3+3)$$ ## Finding postorder - Preorder abcdfge Inorder cbfdgae - From preorder a is the root, now find a in the inorder traversal - Now e is the right sub tree - We are left with sub tree - Preorder bcdfg Postorder cbfdg - Preorder dfg Postorder fdg ### Finding Inorder We cannot find inorder because there can be two trees with the same pre and post order e.g. Postorder is d c b a for # Finding Inorder If each internal node of the binary tree has at least two children then the tree can be determined from pre and post order traversals. pre post a b c d f g e c f g d b e a from this a is the root then e is the right child of a from post order and from Preorder there is nothing after e so e is the leaf b c d f g c f g d b Now b is root of left sub tree and d is right children (from post order) and then from inorder c is only child of d which is left child and so on. # Finding Min and Max ``` TreeMin(x) While left(x)≠ null x← left(x) Return x ``` TreeMax(x) While right(x) \neq null x \leftarrow right(x) Return x # Finding Successor Given x, find the node with the smallest key greater then key[x] Two cases depend upon right sub tree of x - 1: Right sub tree of x is nonempty, then successor is leftmost node in right sub tree - 2: Right sub tree of x is empty, then keep going up until we are no longer a right child. If there is no such ancestor then successor is undefined. we are going to the next node in inorder # Finding Successor ``` TreeSuccessor(x) If right(x)\neq null return TreeMin(Right(x)) Else y \leftarrow parent(x) keep going up while y \neq \text{null} and x=\text{right}(y) until we're no X \leftarrow Y longer a right y \leftarrow parent(y) child Return y ``` ### Insertion In a binary Search Tree Take an element whose left and right children are null and insert it into T Find place in T where z belongs (as if searching for z) and add z Runtime on a tree of height h is O(h) ### Deletion: Case-I if x has no children: just remove x #### **Deletion Case-II** If x has exactly one child then to delete x simply make p[x] point to that child #### **Deletion Case-III** If x has two children, then to delete it we have to find its predecessor(going left and finding the rightmost node) or successor y and then Replace x with y (it will have at most one child) and delete y #### Case-IV To delete root and successor is undefined, then need to take care of the start pointer # Time complexity Running time for delete, insertion and search worst case O(n) Average Case O(logn) Creating a BST (Inserting n elements one by one) worst case O(n²) Average case O(nlogn) Inorder traversal of a BST gives a sorted list and takes O(n) time. ### Questions, Suggestions and Comments ### Question 1 Suppose that we have numbers between 1 and 1000 in a binary search tree, and we want to search for the number 363. Which of the following sequences could not be the sequences of nodes examined. - A) 2, 252, 401, 398, 330, 344, 397, 363 - B) 924, 220, 911, 244, 898, 258, 362, 363 - C) 925, 202, 911, 240, 912, 245, 363 - D) 2, 399, 387, 219, 266, 382, 381, 278, 363 ### Question 2 A binary search tree is generated by inserting in order the following integers: 50, 15, 62, 5, 20, 58, 91, 3, 8, 37, 60, 24 The number of nodes in the left sub-tree and right sub-tree of the root respectively is - A) (4, 7) - B) (7, 4) - (8,3) - D)(3,8) ### Question 3 Maximum number of nodes in a binary tree of level k, $k \ge 1$ is - A) $2^k + 1$ - B) $2^k 1$ - C) 2^{k-1} - D) $2^{k-1} 1$