
Non linear data structures-Trees

1 Copyright @ gdeepak.Com 6/6/2012 7:23 PM

Deliverables

Tree
basics

Types of
trees

Tree
Traversals

Binary
search tree

Copyright @ gdeepak.Com 2 6/6/2012 7:23 PM

Tree

Technically tree is an abstract model of a
hierarchical structure

A tree consists of nodes with a parent-
child relation

Applications: Organization charts,

 File systems , Programming environments

Copyright @ gdeepak.Com 3 6/6/2012 7:23 PM

Tree terminology

• Root: node without parent (A)

• Internal node: node with at least one child

(A, B, C, F)

• External node (or leaf node) or

 Node without children (E, I, J, K, G, H, D)

• Ancestors of a node: parent, grandparent etc

• Depth of a node: number of ancestors

Copyright @ gdeepak.Com 4

A

B

E F

I J K

C

G H

D

6/6/2012 7:23 PM

Tree basics

Height of a tree: maximum depth of any node

Descendant of a node: child, grandchild etc.

Sub tree: tree consisting of a node and its descendants

Siblings: Children of the same parent

In degree: number of nodes arriving at that node

Out degree: number of nodes leaving that node

Copyright @ gdeepak.Com 5 6/6/2012 7:23 PM

Tree operations

size() isEmpty() root() parent(p) children(p)

isInternal(p) isExternal(p) isRoot(p)
swapElements

(p, q)

replaceElement
(p, o)

Minimum() Maximum() Successor(x) Predecessor(x) Search(x)

Copyright @ gdeepak.Com 6 6/6/2012 7:23 PM

Guess a number between 1 and n

• First Guess 60

Copyright @ gdeepak.Com 7

60

6/6/2012 7:23 PM

Guess a number between 1 and n

• Second Guess 100

Copyright @ gdeepak.Com 8

60

6/6/2012 7:23 PM

Guess a number between 1 and n

How to play so that guesses are minimized

Copyright @ gdeepak.Com 9 6/6/2012 7:23 PM

Binary Tree
Each internal node has at most two children

Ordered Binary Tree or Binary Search Tree

Children of node are ordered pair known as left, right child

Left sub tree of node contains nodes with keys < node's key

Right sub tree of node has nodes with keys ≥ node's key

Both left and right subtrees must be binary search trees

Recursive definition: Either a tree of single node, or whose root has an
ordered pair of children, each is binary tree

Copyright @ gdeepak.Com 10 6/6/2012 7:23 PM

Complete Binary tree

Complete Binary tree
consists of each internal
node having exactly two
children.

Copyright @ gdeepak.Com 11 6/6/2012 7:23 PM

Full and Perfect Binary Tree

Full binary tree has each level of tree completely
filled(except possibly the last) in which nodes will be as left
as possible

Perfect binary tree will have each internal node having two
children and all leaf nodes will be at the same level

Copyright @ gdeepak.Com 12 6/6/2012 7:23 PM

Full and Perfect Binary Tree

Copyright @ gdeepak.Com 13 6/6/2012 7:23 PM

Balanced and Degenerate Tree

Balanced binary tree is a binary tree in which the height of
two subtrees of every node never differ by more than 1

Degenerate tree : Where each parent has only one child

Copyright @ gdeepak.Com 14 6/6/2012 7:23 PM

Balanced and Degenerate Tree

Copyright @ gdeepak.Com 15 6/6/2012 7:23 PM

Few formulas

n number of nodes

e number of external nodes

i number of internal nodes

h height

n = 2h + 1 − 1 for perfect binary trees

 min: n = 2h and max: n = 2h + 1 − 1 for complete binary trees

e= 2h in a perfect binary tree

Left most child is the smallest element of the BST and right
most element is the largest element of the tree

Copyright @ gdeepak.Com 16 6/6/2012 7:23 PM

Formulas for complete binary trees

e = i + 1

n = 2e – 1

h  (n - 1)/2

e  2h

h  log2 e

h  log2 (n + 1) - 1

Copyright @ gdeepak.Com 17 6/6/2012 7:23 PM

Converting a tree to binary tree

Copyright @ gdeepak.Com 18 6/6/2012 7:23 PM

Searching in a tree (Recursion)

Search(t, k)

If t=null or k=t

 return t

 if k < x

 return Search(Left(t),k)

 else

 return Search(Right(t),k)

Copyright @ gdeepak.Com 19 6/6/2012 7:23 PM

Searching in a tree (Iterative)

Search(t, k)

While t ≠ null or k ≠ t

 if k < t

 t←Left(t)

 else

 t← Right(t)

 return t

Copyright @ gdeepak.Com 20 6/6/2012 7:23 PM

Complexity of search

It will depend upon the height of the tree because with every loop
iteration we are progressing to next level of the loop.

Worst case: when we have a twig O(n)

Average case : When tree is nearly complete O(logn)

Best Case: O(1)

Using a complex proof it is known that Expected height of a BST
built from a random data is O(logn)

Copyright @ gdeepak.Com 21 6/6/2012 7:23 PM

Insert(T, k)
Insert(T, k)
 if Root(T) = null
 Root(T) =k
else
 y←Root(T)
while y ≠ null
 prev ← y
 if k<y
 y ← left(y)
 else
 y ← right(y)

parent(k) ← prev
If k < prev
 left(prev) ← x
else
 right(prev) ← x

Copyright @ gdeepak.Com 22 6/6/2012 7:23 PM

Special Case

What if we need to insert a duplicate element

Does the order of insertion matters : Yes, It will change the
topology of the tree

Copyright @ gdeepak.Com 23 6/6/2012 7:23 PM

Linked Representation

Copyright @ gdeepak.Com 24

6/6/2012 7:23 PM

Tree Traversal

A traversal visits the nodes of a tree in a
systematic manner

DFS (Depth first search of a tree has three
types Preorder, Postorder and Inorder)

BFS (Breadth first search) of a tree is level
wise

Copyright @ gdeepak.Com 25 6/6/2012 7:23 PM

Inorder traversal

In inorder traversal, left node is visited before the root node
and right node is visited after the root node

Application: It gives data in sorted order in binary search
trees

InorderTraversal(x)

If x ≠ null

 InorderTraversal(Left(x))

 Print x // or any other work to be done on that node

 InorderTraversal(Right(x)) //Time Complexity Ө(n)

Copyright @ gdeepak.Com 26 6/6/2012 7:23 PM

Non recursive inorder traversal

To process a node:

Follow left links until Null (push onto stack).

Pop Print and process.

Follow right link (push onto stack).

Copyright @ gdeepak.Com 27 6/6/2012 7:23 PM

Copyright @ gdeepak.Com 28

6

6

6 3

6 3 1

6 3

6

6 5

6

-

10

10 8

10

-

14

-

6/6/2012 7:23 PM

Preorder Traversal

In preorder traversal, a node is visited before its
descendants

Application: print a structured document

PreorderTraversal(x)

 If x ≠ null

 print x

 PreorderTraversal(Left(x))

 PreorderTraversal(Right(x))

Copyright @ gdeepak.Com 29 6/6/2012 7:23 PM

Preorder Traversal

Copyright @ gdeepak.Com 30

6
6 3 1 5 10 8 14

6/6/2012 7:23 PM

Postorder Traversal

In postorder traversal, a node is visited after its
descendants

Application: compute space used by files in a directory and
its subdirectories, Evaluating arithmetic operation

PostorderTraversal(x)

 If x ≠ null

 PostorderTraversal(Left(x))

 PostorderTraversal(Right(x))

 print x

Copyright @ gdeepak.Com 31 6/6/2012 7:23 PM

Postorder Traversal

Copyright @ gdeepak.Com 32

6
1 5 3 8 14 10 6

6/6/2012 7:23 PM

BFS Traversal

Copyright @ gdeepak.Com 33

6
6 3 10 1 5 8 14

6/6/2012 7:23 PM

Arithmetic expression trees

Copyright @ gdeepak.Com 34

((2+2)+(2+2))+(3+3)

6/6/2012 7:23 PM

Finding postorder
• Preorder abcdfge

Inorder cbfdgae
• From preorder a is the root,

now find a in the inorder
traversal

• Now e is the right sub tree
• We are left with sub tree
• Preorder bcdfg

Postorder cbfdg
• Preorder dfg

Postorder fdg

Copyright @ gdeepak.Com 35

a

b

c d

f g

e

6/6/2012 7:23 PM

Finding Inorder

We cannot find inorder because there can be two trees with
the same pre and post order e.g. Postorder is d c b a for
both the trees below

Copyright @ gdeepak.Com 36

a

b

c

d

a

d

c

b

6/6/2012 7:23 PM

Finding Inorder

If each internal node of the binary tree has at least two children then the
tree can be determined from pre and post order traversals.

pre post

a b c d f g e c f g d b e a

from this a is the root then e is the right child of a from post order and
from Preorder there is nothing after e so e is the leaf

b c d f g c f g d b

Now b is root of left sub tree and d is right children (from post order)
and then from inorder c is only child of d which is left child and so on.

Copyright @ gdeepak.Com 37 6/6/2012 7:23 PM

Finding Min and Max

TreeMin(x)

While left(x)≠ null

x← left(x)

Return x

TreeMax(x)

While right(x)≠ null

x← right(x)

Return x

Copyright @ gdeepak.Com 38 6/6/2012 7:23 PM

Finding Successor

Given x, find the node with the smallest
key greater then key[x]

Two cases depend upon right sub tree of x

1: Right sub tree of x is nonempty, then
successor is leftmost node in right sub tree

2: Right sub tree of x is empty, then keep
going up until we are no longer a right
child. If there is no such ancestor then
successor is undefined.

we are going to the next node in inorder

Copyright @ gdeepak.Com 39 6/6/2012 7:23 PM

Finding Successor

TreeSuccessor(x)

If right(x)≠ null

 return TreeMin(Right(x))

Else

 y ← parent(x)

 while y ≠ null and x=right(y)

 x ← y

 y ← parent(y)

Return y

Copyright @ gdeepak.Com 40

keep going up
until we’re no
longer a right
child

6/6/2012 7:23 PM

Insertion In a binary Search Tree

Take an element whose left and right children are null and
insert it into T

Find place in T where z belongs (as if searching for z) and
add z

Runtime on a tree of height h is O(h)

Copyright @ gdeepak.Com 41 6/6/2012 7:23 PM

Deletion: Case-I

if x has no children :
just remove x

Copyright @ gdeepak.Com 42 6/6/2012 7:23 PM

Deletion Case-II

If x has exactly one child then to delete x simply make p[x]
point to that child

Copyright @ gdeepak.Com 43 6/6/2012 7:23 PM

Deletion Case-III

If x has two children, then to delete it we have to find its
predecessor(going left and finding the rightmost node) or
successor y and then Replace x with y (it will have at most
one child) and delete y

Copyright @ gdeepak.Com 44 6/6/2012 7:23 PM

Case-IV

To delete root and successor is undefined, then need to take
care of the start pointer

Copyright @ gdeepak.Com 45 6/6/2012 7:23 PM

Time complexity

Running time for delete, insertion and search

worst case O(n)

Average Case O(logn)

Creating a BST (Inserting n elements one by one)

worst case O(n2)

Average case O(nlogn)

Inorder traversal of a BST gives a sorted list and takes O(n)
time.

Copyright @ gdeepak.Com 46 6/6/2012 7:23 PM

Questions, Suggestions and Comments

Copyright @ gdeepak.Com 47 6/6/2012 7:23 PM

Question 1

Suppose that we have numbers between 1 and 1000 in a
binary search tree, and we want to search for the number
363. Which of the following sequences could not be the
sequences of nodes examined.

A) 2, 252, 401, 398, 330, 344, 397, 363

B) 924, 220, 911, 244, 898, 258, 362, 363

C) 925, 202, 911, 240, 912, 245, 363

D) 2, 399, 387, 219, 266, 382, 381, 278, 363

Copyright @ gdeepak.Com 48 6/6/2012 7:23 PM

Question 2

A binary search tree is generated by inserting in order the
following integers: 50, 15, 62, 5, 20, 58, 91, 3, 8, 37, 60, 24

The number of nodes in the left sub-tree and right sub-tree
of the root respectively is

A) (4, 7)

B) (7, 4)

C) (8, 3)

D) (3, 8)

Copyright @ gdeepak.Com 49 6/6/2012 7:23 PM

Question 3

Maximum number of nodes in a binary tree of level k, k ≥ 1
is

A) 2k + 1

B) 2k – 1

C) 2k–1

D) 2k–1 – 1

Copyright @ gdeepak.Com 50 6/6/2012 7:23 PM

