Code Tuning
Code tuning

- Used to write better code
- Needs better understanding of the programming language and its compiler
- Is equivalent of code optimization at Higher Language Level
Loop Fission and Fusion

Combining loops that operate over same range of values

```c
int i, a[100], b[100];
for (i = 0; i < 100; i++)
{
    a[i] = 1;
}
for (i = 0; i < 100; i++)
{
    b[i] = 2;
}
```

After Loop Fusion

```c
int i, a[100], b[100];
for (i = 0; i < 100; i++)
{
    a[i] = 1;
    b[i] = 2;
}
```
Unswitching of loops

```c
int i, w, x[1000], y[1000];
for (i = 0; i < 1000; i++)
{
    x[i] = x[i] + y[i];
    if (w) = 1
        y[i] = 0;
}

Improved Code After Unswitching
int i, w, x[1000], y[1000];
if (w)
{
    for (i = 0; i < 1000; i++)
    {
        x[i] = x[i] + y[i];
        y[i] = 0;
    }
}
Else {
    for (i = 0; i < 1000; i++)
    {
        x[i] = x[i] + y[i];
    }
}
```
Loop Unrolling

```c
for (int x = 0; x < 100; x++)
{
    delete(x);
}
```

Improved code after unrolling

```c
for (int x = 0; x < 100; x += 2)
{
    delete(x);
    delete(x+1);
}
```
Loop-invariant code

for (i = 0; i < n; ++i) {
 x = y + z;
 a[i] = 6 * i + x * x;
}

Improved code after taking out the loop-invariant code

x = y + z;
t1 = x * x;
for (i = 0; i < n; ++i) {
 a[i] = 6 * i + t1;
}
Minimize work inside loops

For (i = 1; i < n/2; i++)
{
...
}

Need to compute n/2 times in all iterations

Improved code after minimizing the work in loops

m = n/2;
For (i = 1; i < m; i++)
{
...
}
Use of sentinel values

To find the number \(x \) in array \(a \)
While \((i < n) \) and \((x <> a[i])\)
{
 \(i=i+1;\)
}
If \((i<n)\)
Print number at position \(i\)
Else
Print number not present

Improved Code after using sentinel values
\(A[n+1]=x;\)
While \((x <> a[i])\)
{
 \(i=i+1;\)
}
if \(i== (n+1)\)
print number not present
else
print position of number \(i\)
Order condition testing in Switch Case & If-Else by frequency

Read(RegnNo)
Case Grade(student)
 1: {……}
 2: {……}
 3: {……}
 4: {……}
Endcase

Read(RegnNo)
Case Grade(student)
 2: {……}
 3: {……}
 1: {……}
 4: {……}
endcase
Common Sub expression Elimination

\[a = b \times c + g; \]
\[d = b \times c \times d; \]

\[\text{tmp} = b \times c; \]
\[a = \text{tmp} + g; \]
\[d = \text{tmp} \times d; \]
Minimizing array references

If the same array element is repeatedly referred inside a loop, then move it outside the loop

For(a=0;a<5;a++)
{
for (b=0;b<10;b++)
{
Total[b]=total[b]*sum[a]
}
}
for(a=0;a<5;a++)
{
Sum_now=sum[a]
for (b=0;b<10;b++)
{
Total[b]=total[b]*sum_now;
}
}
Use Constants of Correct Type

Float x;
X=5; convert 5 to 5.0 and then stores into x

int i;
i=3.14; convert 3.14 to 3 and store into i
Precompute Results

For(i=0; i<100; i++)
{
 Y = log(x)/log(2)
 B = log(a)/log(2)
}

Improved Code after Precomputing

Twolog = log(2)
For(i=0; i<100; i++)
{
 Y = log(x)/Twolog
 B = log(a)/Twolog
Dead Code elimination

```c
int xyz()
{
    int a = 24;
    int b = 25; /* Assignment to dead variable */
    int c;
    c = a - 2;
    return c;
    b = 24; /* Unreachable code */
    return 0;
}
```

Improved Code after eliminating Dead Code

```c
int xyz()
{
    int a = 24;
    /*
    int c;
    c = a - 2;
    return c;
    */
    int c;
    c = a - 2;
    return c;
}
```
Exploit Algebraic Identities

- Algebraic identities can be used to replace costlier operations by cheaper ones Whenever we need to find whether $\sqrt{x} < \sqrt{y}$, we can use the algebraic identity which says $x < y$ only when $x < y$. So it is enough to check if $x < y$ in this case.

- not (A or B) is cheaper than not A and not B
Lazy computations

★ n = x*x + 2*y + z
if q > 10 then
{ }
else q > n then
{ }
else
{ }

Improved Code after Lazy computation
if q > 10 then
{ }
else
{
 n = x*x + 2*y + z
if q > n then
{ }
else
{ }
Short circuiting and reordering

if (a>b) && (c>d) && (e>f)
{

}

Using Locality of reference by avoiding cache misses

```c
for i in 0..n
for j in 0..m
for k in 0..p
C[i][j] = C[i][j] + A[i][k] * B[k][j];
```

```c
for i in 0..n
for k in 0..m
for j in 0..p
C[i][j] = C[i][j] + A[i][k] * B[k][j];
```

- It is better to refer to several memory addresses that share the same row (spatial locality). By keeping the row number fixed, the second element changes more rapidly. In C and C++, this means the memory addresses are used more consecutively. Since j affects the column reference of both matrices C and B, it should be iterated in the innermost loop (this will fix the row iterators, i and k, while j moves across each column in the row). This will not change the mathematical result, but it improves efficiency. By switching the looping order for j and k, the speedup in large matrix multiplications becomes dramatic.