

 Any one who has taken the one semester Algorithms

course at UG or PG Level

 Anyone who has gone through any book on

algorithms from start to end

 Anyone who says I am at level 3 with regard to

expertise on algorithms if we have 1, 2 and 3 level

(level 3 being the highest)

7/10/2011 2

 As old as human civilization

 Five Important persons who have direct relevance

to Algorithms

 Al Khwarizmi

 Allan Turing

 Von Neumann

 Donald E Knuth

 John Bentley

7/10/2011 3

 Difference between man and animal

 Abstraction (real life problems to be converted to

mathematical problems)

 Using tools (How much effective)

7/10/2011 4

Components of an Algorithm

Input

Output

Logic to convert from Input to output

7/10/2011 5

 Specify Problem

 Specify input

 Output Properties

 Generic relationship between input and output

7/10/2011 6

 Works on values: inputs

 Produces values : outputs

 Only computational problems not others can be

solved using computer algorithms

 others like whether God exists, whether you love

me or not, whether he fears or not

7/10/2011 7

 Computation procedure

 Sequence of computation steps - finite &

unambiguous

 Manipulation of mathematical entities

7/10/2011 8

 An Algorithm is a correct solution for a problem in

finite sequence of steps where each step is

unambiguous and which terminates for all possible

inputs in a finite amount of time and memory.

7/10/2011 9

 Is something more important then performance

 Modularity

 Scalability

 Graceful Degradation for size and number of inputs

 Correctness

 Maintainability

 Simple

7/10/2011 10

 User friendly

 Extensible

 Programmer Time

 Concurrency

 Distributed

 Upload performance

 Security

 Power Efficiency

 Hardware/OS compliant

 Memory

7/10/2011 11

 It is art more then a science

 It is fun

 Fluidity of thinking

 New Idea generation is required for a new algorithm

 Crude solution to refined solution e.g. sitting place

 Performance is the currency of computing

7/10/2011 12

 complexity of an algorithm is resources required to

run that algorithm

 memory now mainly concerned with bandwidth,

small gadgets, smart cards. Vista requires 1 GB of

RAM.

 Running in RAM or Cache is still a big issue

 Small programs more efficient (Concept of time

space trade off does not hold good always)

 advertisement in byte in 1960 unimaginable 32 KB

of RAM whooping 10 MB of Hard Disk

7/10/2011 13

 Write a program implementing the algorithm

 Run the program with inputs of varying size and

composition

 Use a function, like the built-in clock() function, to

get an accurate measure of the actual running time

 Plot the results

7/10/2011 14

7/10/2011 15

 It is necessary to implement the algorithm, which

may be difficult

 Results may not be indicative of the running time

on other inputs not included in the experiment.

 In order to compare two algorithms, the same

hardware and software environments must be used

 Even in same hardware and software environments

the results may vary depending upon the processor

load, sharing of resources, No. of background

processes, Actual status of Primary and Secondary

Memory at the time of running the program,

Compiler, Network Architecture, programming

language
7/10/2011 16

 Apriori – Designing then making

 Posterior - Making then waking up after the problem

crops up

 Apriori is always better.

 There is corresponding guarantee that any

algorithm who is better in performance in its apriori

analysis will be better in performance in its

posterior analysis

7/10/2011 17

 Is not related to type of input

 Different instructions may be very differently

loaded in terms of resource requirements

 Can be taken as a first preliminary indication to

compare the size of two algorithms but should not

cheat you

 Only 10% of the instructions may be actually

responsible for the 90% of resource usage

7/10/2011 18

 To count each and every operation of the program.

 Detailed

 Takes more time and is complex and tedious

(average lines of codes are in the range of 3 to 5

million lines)

 Those operations which are not dependent upon the

size or number of the input will take constant time

and will not participate in the growth of the time or

space function, So they need not be part of our

analysis

7/10/2011 19

 Concerned with selective instructions which are
dominant and costliest

 Selection of the right instructions is very important

 Comparisons and Swapping are basic operations in
sorting algorithms

 Arithmetic operations are basic operations in math
algorithms

 Comparisons are basic operations in searching
algorithms

 Multiplication and Addition are basic operations in
matrix multiplication

7/10/2011 20

 No. of Inputs items

 No. of bits value of Input does not varies (GCD only
2 numbers but will vary on the large and small
value of numbers) what increases in the number of
bits to represent the information

 No. if input items can be through single parameter -
sorting

 Multiple parameters in graphics (vertex & Edges)

 Matrix multiplication pXq and qXr depends on p,q,r
three independent matrices. If square matrices
then only a single parameter.

7/10/2011 21

 Even No. of inputs and bits are same

 Worst Case

 goodness of an algorithm is most often expressed in
terms of its worst-case running time.

 Need for a bound on one’s pessimism, Every Body needs a
guarantee. This is the maximum time an algorithm will
take on a given input size

 ease of calculation of worst-case times

 In case of critical systems we can not rely on average or
best case times

 Worst Case for all sorting problems is when the inputs
are in the reverse order

7/10/2011 22

 Very Difficult to compute

 Average-case running times are calculated by first

arriving at an understanding of the average nature of

the input, and then performing a running-time analysis

of the algorithm for this configuration

 Needs assumption of statistical distribution of input

 It is supposed that all inputs are equally likely to occur

 If we have the same worst case time for two algorithms

then we can go for average case analysis

 If the average case is also same then we can go for

micro analysis or empirical analysis

7/10/2011 23

 Let IC(i) is the instruction count for an input i In the
set of all inputs of size n

 Worst case complexity WCC(n) = Max IC(in)

I ε in
 Average Case Complexity will be

(IC(i1)+IC(i2)+……IC(in))/n

 990,991,994,990,999,1000 (A genuine example for
average case)

 1,1,1,1,1,1,1….1000 (A bad example of average
case)

7/10/2011 24

 Not used in general

 Best case may never occur

 Can be a bogus or cheat algorithm that is otherwise

very slow but works well on a particular input

 A particular input is likely to occur more then 90%

of the time then we can go for a customized

algorithm for that input

 Best Case for all sorting problems is that sequence

is already in the sorted sequence

7/10/2011 25

 Asymptotic analysis means studying the behavior of

the function when n infinity or very large

 Problems size will keep on increasing so asymptotic

analysis is very important

 Limiting behavior

 We are more concerned with large input size

because small size inputs will not very much in

running time

7/10/2011 26

 Something should relate instruction count and input

size

 Big Oh Notation is the most suitable solution for this

7/10/2011 27

 In most of the algorithms it is difficult to analyze

the exact number of operations

 To simplify the analysis:

 Identify the fastest growing term

 Neglect the slow growing terms

 Neglect the constant factor in the fastest growing

term

7/10/2011 28

n logn nlogn n2 n3 2n n!

1 0 0 1 1 2 1

2 1 2 4 8 4 2

4 2 8 16 64 16 24

8 3 24 64 512 256 40320

16 4 64 256 4096 65536 20764283904000

32 5 160 1024 32768 4294967296 ~infinity

64 6 384 4096 262144 ~infinity ~infinity

7/10/2011 29

7/10/2011 30

7/10/2011 31

Running

time

1 sec 1min 1hour With a 256

times faster

processor in

an hour

400n 2500 150000 9,000,000 2304000000

20nlogn 4096 166,666 7,826,087 2003478272

2n2 707 5477 42,436 678976

N4 31 88 244 1952

2n 19 25 31 39

7/10/2011 32

F(n)=n lg(n) n nlgn n2 n3 2n

10 0.003 µs 0.01 µs 0.033 µs 0.1 µs 1 µs 1 µs

20 0.004 µs 0.02 µs 0.086 µs 0.4 µs 8 µs 1 ms

30 0.005 µs 0.03 µs 0.147 µs 0.9 µs 27 µs 1 s

40 0.005 µs 0.04 µs 0.213 µs 1.6 µs 64 µs 18.3 min

50 0.006 µs 0.04 µs 0.282 µs 2.5 µs 125 µs 13 days

102 0.007 µs 0.10 µs 0.664 µs 10 µs 1 ms 4 X 1013

yrs

103 0.010 µs 1.0 µs 9.966 µs 1 ms 1 s infinity

104 0.013 µs 10 µs 130 µs 100 ms 16.7 min Infinity

105 0.017 µs 0.10 ms 1.67 ms 10 s 11.6 days Infinity

106 0.020 µs 1 ms 19.93 ms 16.7 min 31.7 years Infinity

107 0.023 µs 0.01 s 0.23 s 1.16 days 31,709 yrs Infinity

108 0.027 µs 0.1 s 2.66 s 115.7

days

3.17 X 107

yrs
Infinity

109 0.030 µs 1 sec 29.90 s 31.7

years

infinity infinity

n n2 0.1n2 + n + 100 n2 +2n +5

10 100 120 125

20 400 160 445

50 2500 400 2605

100 10000 12000 10205

1000 1000000 101100 1000105

10000 100000000 100100100 100001005

100000 10000000000 10000100100 10000010005

7/10/2011 33

500n and n2/10 will meet at 5000 (threshold)
Unless the threshold is very high we take a lower
growth

 resultant of such a simplification is called the

algorithm’s time complexity.

 It focuses on the growth rate of the algorithm with

respect to the problem size

 it makes sense (both mathematically and logically)

to ignore the slow growing terms and also the co-

efficient of the fastest growing term.

7/10/2011 34

 g(n) = O(f(n)) if there are positive constants c and n0
such that g(n) <= cf(n) for all n >= n0 This notation is
known as Big-Oh notation

 f(n) = 2n2+7n+9

 g(n)= 20n2+6n+42 belongs to O(f(n))

 c=10 no=1

 g(n) = n3 f(n) = 2n2+7n+9

 n3/2n2+7n+9 infinity as n-> infinity so you cannot
find any c

 so n3 does not belong to O(f(n)) because order of growth
is more then f(n)

7/10/2011 35

7/10/2011 36

 how to find the constant for the sake of argument

 a0n
0+a1n

1+a2n
2+………akn

K belongs to O(nk)

 2n2+7n+9 is big oh of n2

 So ignore the lower order terms and ignore the
constants associated with the higher order terms

 g(n) is big oh of f(n)

 If g(n)/f(n) ->c(finite) for n infinity

 c can be zero also

 cf(n) is the upper bound for n>n0 and growth rate
is equal or more

7/10/2011 37

 f(n) = Θ(g(n)) if there are positive constants c1, c2 and
n0 such that c1f(n) <=g(n) <= c2f(n), for all n >= n0. This
notation is known as Big-Theta notation

 20n2+17n+9 belongs to Θ(n2)

 8n+2 does not belong to Θ(n2)

 n3 does not belong to the Θ(n2)

 If g(n)/f(n) ->c(finite) for n tending to infinity

c can not be zero

also

 If f(n)/g(n) ->c(finite) for n tending to infinity

c can not be zero

7/10/2011 38

 f(n) = Ω(g(n)) if there are positive constants c and

n0 such that f(n) >= cg(n) for all n >= n0. This

notation is known as Big-Omega notation

 The Big-Omega notation can be considered as a

lower bound for the f(n) which is the actual running

time of an algorithm.

 Informally Ω(g(n)) denotes the set of all functions

with a larger or same order of growth as g(n). For

example, n2 belongs Ω(n)

7/10/2011 39

 O(n2) Θ(n2) Ω(n2)

7/10/2011 40

3lgn+8 4n2

5n+7 6n2+9

2nlgn 5n2+2n

4n3+3n2

6n6+n4

2n+4n

 consider the set of problems to find the maximum of an
ordered set of n integers. Clearly every integer must be
examined at least once. So Ω(n) is a lower bound for
that. For matrix multiplication we have 2n2 inputs so
the lower bound can be Ω(n2)

 For all sorting & searching we use comparison trees for
finding the lower bound.

 For an unordered set the searching algorithm will take
Ω(n) as the lower bound. For an ordered set it will take

Ω(logn) as the lower bound. Similarly all the sorting
algorithms can not sort in less then Ω(nlogn) time so
Ω(nlogn) is the lower bound for sorting algorithms

7/10/2011 41

 An amortized analysis is any strategy for analyzing a

sequence of operations to show that the average

cost per operation is small, even though a single

operation within the sequence might be expensive.

 Even though we’re taking averages, probability is

not involved

 •An amortized analysis guarantees the average

performance of each operation in the worst case

7/10/2011 42

 The sum of the amortized complexities of all

operations in any sequence of operations be greater

than or equal to their sum of the actual

complexities

 ∑ amortized(i) ≥ ∑ actual(i)

1≤ i ≤ n 1≤ i ≤ n

7/10/2011 43

 Charge ith operation a fictitious amortized cost ci,

where we pay 10 Rs. for 1 unit of work (i.e., time).

 •This fee is consumed to perform the operation.

 •Any amount not immediately consumed is stored in

the bank for use by subsequent operations.

 •The bank balance must not go negative!

 Thus, the total amortized costs provide an upper

bound on the total true costs

7/10/2011 44

 Idea: View the bank account as the potential energy of
the dynamic set.

 Framework:

Start with an initial data structure D0.

 Operation i transforms Di–1to Di.

The cost of operation i is ci.

 Define a potential functionΦ: {Di} →R,

such that Φ(D0) = 0 and Φ(Di) ≥0for all i.

The amortized cost ĉi with respect to Φ is defined to be
ĉi= ci+ Φ(Di) –Φ(Di–1).

7/10/2011 45

 Amortized costs can provide a clean abstraction of

data-structure performance.

 •Any of the analysis methods can be used when an

amortized analysis is called for, but each method

has some situations where it is arguably the

simplest or most precise.

 •Different schemes may work for assigning

amortized costs in the accounting method, or

potentials in the potential method, sometimes

yielding radically different bounds.

7/10/2011 46

 Variable – int , char, float, boolean, double, long,

short, byte

 comparison of Arrays and Link Lists in terms of

access, space , reliability and simplicity

 Single, Double and circular Link List Comparison

7/10/2011 47

 A singly linked list is a concrete data structure

consisting of a sequence of nodes

 Each node stores

 element

 link to the next node

7/10/2011 48

next

elem node

A B C D

 A doubly linked list provides a natural implementation of the List

 Nodes implement Position and store:

 element

 link to the previous node

 link to the next node

 Special trailer and header nodes

7/10/2011 49

prev next

elem

trailerheader nodes/positions

node

 We visualize remove(p), where p = last()

7/10/2011 50

A B C D

p

A B C

D

p

A B C

 We visualize operation insertAfter(p, X), which returns position q

7/10/2011 51

A B X C

A B C

p

A B C

p

X

q

p q

 we should be open to the idea and concept of

linked records, tables, trees and multiple links to

various other nodes as in the general trees.

 dynamic growth of memory

 garbage collection

7/10/2011 52

 Arrays are stored in contiguous memory locations

and contain similar data

 An element can be accessed, inserted or removed

by specifying its position (number of elements

preceding it)

7/10/2011 53

7/10/2011 54

 In operation removeAtPosition(r), we need to fill the
hole left by the removed element by shifting
backward the n - r - 1 elements V[r + 1], …, V[n - 1]

 In the worst case (r = 0), this takes O(n) time

V

0 1 2 nr

V

0 1 2 n

o

r

V

0 1 2 nr

7/10/2011 55

 In operation insertAtposition(r, o), we need to
make room for the new element by shifting
forward the n - r elements V[r], …, V[n - 1]

 In the worst case (r = 0), this takes O(n) time

V

0 1 2 nr

V

0 1 2 nr

V

0 1 2 n

o

r

 1. It is easier to delete in the link list

 2. it is easier to insert in the link list

 3. It is easier to access in the array

 4. Due to Address part there is wastage of memory

in link list

 5. We have to predefine the array so there can be

wastage of memory

 6. Array Size has to be defined and is limited to the

defined size while link list can grow to the limit of

the memory

7/10/2011 56

 7. Continuous allocation is required for array, while

this is not the case with link list

 8. Arrays can be accessed backward and forward

but we have to use special link lists like doubly

linked list for backward access

 9. Arrays definition is part of the language construct

but link list we have to create

 10. Merging two arrays is very difficult while

merging link lists is easy

7/10/2011 57

 Last in First out

 In and Out only from one end

 One end is closed

 Direct applications
 Page-visited history in a Web browser

 Undo sequence in a text editor

 Chain of method calls in the Java Virtual Machine

 Function Calls

 Recursion

 In other data Structures

7/10/2011 58

 push(object): inserts an element

 object pop(): removes and returns the last inserted
element

 object top(): returns the last inserted element
without removing it

 integer size(): returns the number of elements stored

 boolean isEmpty(): indicates whether no elements
are stored

 Boolean isFull(): indicates whether array limit is over

7/10/2011 59

 Performance
 Let n be the number of elements in the stack

 The space used is O(n)

 Each operation runs in time O(1)

 Limitations
 The maximum size of the stack must be defined a

priori and cannot be changed

 Trying to push a new element into a full stack causes

an implementation-specific exception

7/10/2011 60

 In a push operation, when the array is full, instead

of throwing an exception, we can replace the array

with a larger one

 How large should the new array be?

 incremental strategy: increase the size by a constant

c

 doubling strategy: double the size

7/10/2011 61

 Insertions and deletions follow the first-in first-

out scheme

 Insertions are at the rear of the queue and

removals are at the front of the queue

 Two variables keep track of the front and rear

7/10/2011 62

 operations:

 enqueue(Object o): inserts an element o at the end

of the queue

 dequeue(): removes and returns the element at the

front of the queue

 front(): returns the element at the front without

removing it

 size(): returns the number of elements stored

 isEmpty(): returns a Boolean indicating whether no

elements are stored

7/10/2011 63

 In these the deletions and insertions can be done at

both ends. These are the most general implementations

of linear data structures.

7/10/2011 64

 Direct applications

 Waiting lists, bureaucracy

 Access to shared resources (e.g., printer)

 Multiprogramming

 Tunnel

 In other Data Structures

7/10/2011 65

 In an enqueue operation, when the array is full,

instead of throwing an exception, we can replace

the array with a larger one

 Similar to what we did for an array-based stack

7/10/2011 66

7/10/2011 67

 In computer science, a
tree is an abstract
model of a hierarchical
structure

 A tree consists of nodes
with a parent-child
relation

 Applications:
 Organization charts

 File systems

 Programming
environments

Computers

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

 There are four things associated with any tree

 Distinction between nodes

 Value of nodes

 orientation

 structure

 weight/value

7/10/2011 68

7/10/2011 69

 Root: node without parent (A)

 Internal node: node with at
least one child (A, B, C, F)

 External node (or leaf node):
node without children (E, I, J,
K, G, H, D)

 Ancestors of a node: parent,
grandparent etc.

 Depth of a node: number of
ancestors

 Height of a tree: maximum
depth of any node (3)

 Descendant of a node: child,
grandchild etc.

 Subtree: tree consisting of a
node and its descendants subtree

A

B DC

G HE F

I J K

7/10/2011 70

 integer size()

 boolean isEmpty()

 position root()

 position parent(p)

 positionIterator
children(p)

 boolean isInternal(p)

 boolean isExternal(p)

 boolean isRoot(p)

 swapElements(p, q)

 object
replaceElement(p, o)

 A traversal visits the nodes of a tree in a systematic

manner

 In a preorder traversal, a node is visited before its

descendants

 In a postorder traversal, a node is visited after its

descendants

7/10/2011 71

7/10/2011 72

 A traversal visits the
nodes of a tree in a
systematic manner

 In a preorder traversal,
a node is visited before
its descendants

 Application: print a
structured document

A

B IE

F G
C D

H

1

2

3

5

4
6 7 8

9

7/10/2011 73

 In a postorder traversal,

a node is visited after

its descendants

 Application: compute

space used by files in a

directory and its

subdirectories
A

B
I

E

F GC D H

9

3

1

7

2 4 5 6

8

7/10/2011 74

 Specialization of an
inorder traversal
 print operand or operator

when visiting node
 print “(” before

traversing left subtree
 print “)” after traversing

right subtree
+

-2

a 1

3 b

((2 (a - 1)) + (3 b))

7/10/2011 75

 is a tree with the following
properties:
 Each internal node has at

most two children
 The children of a node are an

ordered pair

 We call the children of an
internal node left child and
right child

 Alternative recursive
definition: a binary tree is
either
 a tree consisting of a single

node, or a tree whose root
has an ordered pair of
children, each of which is a
binary tree

A

B C

F GD E

H I

7/10/2011 76

 arithmetic expressions

 decision processes

 searching

7/10/2011 77

 Binary tree associated with a decision process

 internal nodes: questions with yes/no answer

 external nodes: decisions

 Example: dining decision

Want a fast meal?

Pizza Punjabi Food

Capsicum Burger MC South Indian

Yes No

Yes No Yes No

7/10/2011 78

 Binary tree associated

with an arithmetic

expression

 internal nodes:

operators

 external nodes:

operands

 Example: arithmetic

expression tree for the

expression (2 (a - 1) +

(3 b))

+

-2

a 1

3 b

7/10/2011 79

 position leftChild(p)

 position rightChild(p)

 position sibling(p)

7/10/2011 80

 Notation

 n number of nodes

 e number of external

nodes

 i number of internal

nodes

 h height

Properties:

 e = i + 1

 n = 2e - 1

 h i

 h (n - 1)/2

 e 2h

 h log2 e

 h log2 (n + 1) - 1

7/10/2011 81

 A binary search tree is a
binary tree storing keys
(or key-element pairs) at
its internal nodes and
satisfying the following
property:
 Let u, v, and w be three

nodes such that u is in
the left subtree of v and
w is in the right subtree
of v. We have
key(u) key(v) key(w)

 External nodes do not
store items

 An inorder traversal of a
binary search trees visits
the keys in increasing
order

6

92

41 8

7/10/2011 82

 To search for a key k, we
trace a downward path
starting at the root

 The next node visited
depends on the outcome
of the comparison of k
with the key of the
current node

 If we reach a leaf, the
key is not found and we
return a null position

 Example: find(4)

6

92

41 8

<

>

=

7/10/2011 83

 To perform operation
removeElement(k), we
search for key k

 Assume key k is in the
tree, and let let v be the
node storing k

 If node v has a leaf child
w, we remove v and w
from the tree with
operation
removeAboveExternal(w)

 Example: remove 4

6

92

41 8

5

v

w

6

92

51 8

<

>

7/10/2011 84

 To perform operation
insertItem(k, o), we
search for key k

 Assume k is not already
in the tree, and let let
w be the leaf reached
by the search

 We insert k at node w
and expand w into an
internal node

 Example: insert 5

6

92

41 8

6

92

41 8

5

<

>

>

w

w

 Used to write better code

 Needs better understanding of the programming

language and its compiler

 Removes un-necessary portion of code

 Is equivalent of code optimization at Higher

Language Level

7/10/2011 85

 Looping constructs in a program are executed many
times. There are quite a few of code tuning techniques
which can be applied to looping constructs in order to
improve the performance of the code.

 combining loops that operate over same range of values

for (k = 1 to n) { initialize T[k] };

for (m = 1 to n) { Max[m] = m * Max[m] };

Before Jamming, 2n Loop Checks

for (k = 1 to n) {

initialize T[k]; Max[k] = k * Max[k] };

After Jamming, n Loop Checks

7/10/2011 86

 Unswitch loops that contain if tests, if the results of

these tests do not change inside the loop

for (I=0; i<noofemployees; I++)

{if budgetpassed = YES

........

else

........

}

7/10/2011 87

 Switching basically refers to making a decision

(using a selectional construct) inside a loop every

time the loop is executed. If the result of the

selectional statement does not change inside the

loop then it makes more sense to unswitch the loop

by making the decision outside the loop. In such

cases the loop is turned inside out by putting the

loop inside the selectional construct. The basic idea

in unswitching is to minimize / remove unnecessary

computation inside a looping construct.

7/10/2011 88

7/10/2011 89

For (i = 1 to n/2)

{…}

Need to compute n/2 in every iteration is removed

n_2 = n/2;

For (i = 1 to n_2)

{…}

7/10/2011 90

 Sentinel values can be used in a search loop which

looks for an element in an array. If the required size

of the array is 10, declare it as 11. In all search

operation, use the 11th position to store the

element to be searched.

7/10/2011 91

7/10/2011 92

7/10/2011 93

7/10/2011 94

7/10/2011 95

7/10/2011 96

7/10/2011 97

 Algebraic identities can be used to replace costlier

operations by cheaper ones Whenever we need to

find whether x < y, we can use the algebraic

identity which says x < y only when x < y. So it is

enough to check if x < y in this case.

 not (A or B) is cheaper than not A and not B

7/10/2011 98

Avoid re-computation of expressions

Make use of previously computed value

Example:

x = 2*i

y = 2*i

z = i*2

Transform y = x and z = x at appropriate points or

detect i* 2 as a common expression

7/10/2011 99

Consider the following fragment:

..........

x = 10 ;

y = ;

..........

if (x < 100) then y = y + 5 else y = y - 5

else branch will never get executed since the value of „x‟
cannot be greater than or equal to 100

7/10/2011 100

7/10/2011 101

n=x*x+2*y+z

if q>10 then

{

……

}

else q > n then

{

…..

}

else

{

…

}

7/10/2011 102

if q>10 then

{

……

}

else

{n=x*x+2*y+z

if q > n then

{

…..

}

else

{

…

}}

 if (a>b) && (c>d) && (e>f)

{

…..

}

7/10/2011 103

 Coroutines can run in single pass rather then multi

pass algorithms. In this multiple routines can call

each other at the same level instead of a

hierarchical level

 Compilers

7/10/2011 104

 Given two numbers m and n find their greatest

common divisor.

1 divide m by n and let r be the remainder

2 if r=0, algorithm terminates; n is the answer

3 set m=n; n=r; and go to step 1

Recursive algorithm

GCD(m,n) = GCD(n,m mod n)

7/10/2011 105

1 divide m by n and let r be the remainder

2 if r=0, algorithm terminates; n is the answer

3 divide n by r and let m be the remainder

4 if m=0, algorithm terminates; r is the answer

5 divide r by m and let n be the remainder

6 if n=0, algorithm terminates; m is the answer

7. go to step 1

7/10/2011 106

 There is nothing more difficult to take in world,

more perilous to conduct, or more uncertain in its

success than to take the lead in the introduction of

new order of things

 Sorting solves togetherness problem

 Aids in searching

7/10/2011 107

 Computer Industry says that around 50 percent of

the running time on their computers is currently

being spent on sorting, when all of the users are

taken into account

 What that mean to us

 There are many important applications of sorting

 Many people sort when they should not

 Inefficient algorithms are common in use

7/10/2011 108

 Given N nos. , we have to rearrange them so that

a1 ≤ a2 ≤ a3≤a4 ≤a5 ≤a6 ≤ a7≤a8 ……≤an-1 ≤an

There are n! different permutations possible for this

sequence, out of this only 1 is the right sequence

Inversions are also very important in sorting that how

many numbers are in reverse order

7/10/2011 109

 Interchanging pairs of elements that are out of

order until no such pairs exist

 Bubble sort works by comparing adjacent elements

of an array and exchanges them if they are not in

order.

 After each iteration (pass) the largest element

bubbles up to the last position of the array. In the

next iteration the second largest element bubbles

up to the second last position and so on

7/10/2011 110

1. Begin

2. For i = 1 to n-1 do

2.1 For j = 1 to n-1-i do

2.2.1 If (a[j+1] < a[j]) then swap a[j] and

a[j+1]

3. End

7/10/2011 111

pass1 pass2 pass3 pass4 pass5 pass6 pass7 pass8 pass9

703 908 908 908 908 908 908 908 908 908

765 703 897 897 897 897 897 897 897 897

677 765 703 765 765 765 765 765 765 765

612 677 765 703 703 703 703 703 703 703

509 612 677 677 677 677 677 677 677 677

154 509 612 653 653 653 653 653 653 653

426 154 509 612 612 612 612 612 612 612

653 426 154 509 512 512 512 512 512 512

275 653 426 154 509 509 509 509 509 509

897 275 653 426 154 503 503 503 503 503

170 897 275 512 426 154 426 426 426 426

908 170 512 275 503 426 154 275 275 275

061 512 170 503 275 275 275 154 170 170

512 061 503 170 170 170 170 170 154 154

087 503 061 087 087 087 087 087 087 087

503 087 087 061 061 061 061 061 061 061
7/10/2011 112

 We have a nested for loop and hence we need to do an
inside out analysis.

Step 2.2.1 at the most performs 2 operations (one
comparison and one swapping) and these operations are
repeated ((n-1-i) times. i.e.

Step 2.1 performs (n-i-1) operation where i varies from 1 to
n-1 (step 2). So the total number of operations
performed by bubble sort is : (n-1-1)+(n-2-1)+(n-3-
1)+…+(n-(n-1) – 1) = (n-2)+(n-3)+(n-4)+…+2 = ((n-2)(n-
1))/2 – 1 = (n2-3n)/2.

 Hence the worst case complexity of bubble sort is O(n2)

7/10/2011 113

 traversing in opposite direction in alternate passes

 if two adjacent elements don’t exchange for two

consecutive passes then we can fix their position

7/10/2011 114

 Before examining record Rj , we assume that the

preceding records R1 to Rj-1 have already been

sorted and we insert Rj into its proper place among

the previously sorted records

7/10/2011 115

 INSERTION-SORT (A, n)⊳A[1 . . n]

 for j ←2 to n do

 key ←A[j]

 i ←j –1

 while i > 0 and A[i] > key

 do A[i+1] ←A[i]

 i ←i –1

 A[i+1] = key

7/10/2011 116

7/10/2011 117

503 087

087 503 512

028 503 512 061

061 087 503 512 908

061 087 503 512 908 170

061 087 170 503 512 908 897

…. …. …. …

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

 Two Way insertion

 Binary Search with in sorted sequence

7/10/2011 118

 If we have a sorting algorithm which moves items

only one position at a time, its average running

time will be at best proportional to n2

since each record must travel an average of about

n/3 positions during the sorting process. So if we

want to make substantial improvements over

straight insertion, we need some mechanism by

which the records can take long leaps instead of

short steps

7/10/2011 119

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703

8-

sort

503 087 154 061 612 170 765 275 653 426 512 509 908 677 897 703

4-

sort

503 087 154 061 612 170 765 275 653 426 512 509 908 677 897 703

2-

sort

154 061 503 087 512 170 612 275 653 426 765 509 897 677 908 703

1-

sort

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

7/10/2011 120

 This does not allows the interaction between even

and odd keys, so we can try 7-sort,5-sort,3-sort and

1-sort

7/10/2011 121

 Idea is to use each list for certain range of keys.

The set of all possible values of the keys is

partitioned into m parts, we provide additional

storage of M list heads.

 Suppose we have 16 keys used in our example and

divided into 4 parts 0-249, 250-499,500-749,750-

999.

7/10/2011 122

7/10/2011 123

4 items

entered

8 items

entered

12 items

entered

16 items

entered

List 1 061,087 061,087,

170

061,087,

154,170

061,087,

154,170

List 2 275 275,426 275,426

List3 503,512 503,512 503,509,

512,653

503,509,

512,612,

653,677,

703

List 4 897,908 897,908 765,897,

908

 Burning the candle at both ends

 Here we partition the given list into two partitions based on
the pivot element. The lesser elements come on the left of
the pivot and the greater come on the right of the pivot.

 We keep two pointers l and r . Increase l by 1 and continue
until encountering a record belonging to right partition.
Similarly decrease r by 1 and continue until encountering a
record belonging to the left partition. if l< r then exchange
these records, and move on to process the next records in
the same way.

 All comparisons during a given stage are made against the
same key, so this key may be kept in a register and only a
single index needs to be changed between comparisons. So in
this inner loops of computation become very fast.

7/10/2011 124

7/10/2011 125

l,r

1,16

[503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703]

1,6 [275 087 154 061 426 170] 503 [897 653 908 512 509 612 677 765 703]

1,4 [170 087 154 061] 275 426 503 [897 653 908 512 509 612 677 765 703]

1,3 [061 087 154] 170 275 426 503 [897 653 908 512 509 612 677 765 703]

2,3 061 [087 154] 170 275 426 503 [897 653 908 512 509 612 677 765 703]

8,16 061 087 154 170 275 426 503 [897 653 908 512 509 612 677 765 703]

8,14 061 087 154 170 275 426 503 [765 653 703 512 509 612 677] 897 908

8,13 061 087 154 170 275 426 503 [677 653 703 512 509 612] 765 897 908

8,11 061 087 154 170 275 426 503 [509 653 612 512] 677 703 765 897 908

9,11 061 087 154 170 275 426 503 509 [653 612 512] 677 703 765 897 908

9,10 061 087 154 170 275 426 503 509 [512 612] 653 677 703 765 897 908

-- 061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

 Bottom out when the array size is less then 5 or 10

 Use 3 elements and take their middle element as

the pivot element

7/10/2011 126

 In selection sort, the basic idea is to find the

smallest number in the array and swap this number

with the leftmost cell of the unsorted array,

thereby increasing the sorted part of the array by

one more cell

 Selection method requires all the input items to be

present before the sorting may proceed. While in

insertion sort inputs may be received sequentialy.

7/10/2011 127

 1. Begin

 2. For i = 1 to n-1 do

 2.1 set min = i

 2.2 For j = i+1 to n do

 2.2.1 If (a[j] < a[min]) then set min = j

 2.3 If (i < min) then swap a[i] and a[min]

 3. End

7/10/2011 128

7/10/2011 129

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703

503 087 512 061 703 170 897 275 653 426 154 509 612 677 765 908

503 087 512 061 703 170 765 275 653 426 154 509 612 677 897 908

503 087 512 061 703 170 677 275 653 426 154 509 612 765 897 908

..

061 087 154 170 275 426 503 509 512 612 653 677 703 765 897 908

 Group Selection can lead to nlog n time

 selecting min and max at the same time

7/10/2011 130

 Means the combination of two or more sorted files into
one sorted file

 Dividing

 503 703 765 087 512 677 908 275

 503 703 765 087 | 512 677 908 275

 503 703 | 765 087 512 677 | 908 275

 503 | 703 765 | 087 512 | 677 908 | 275

 Merging

 503 703 | 087 765 512 677 | 275 908

 087 503 703 765 | 275 512 677 908

 087 275 503 512 677 703 765 908

7/10/2011 131

 Start with a distribution sort based on the least

significant digit of the keys, moving records from

the input area to the auxiliary area. Then do

another on the next least significant digit, moving

the records back into the original input area and so

on.

7/10/2011 132

 Input area contents 503 087 512 061 908 170 897 275 653 426
154 509 612 677 765 703

 Counts for unit digit distribution 1 1 2 3 1 2 1 3 1 1
 storage allocation based on these counts 1 2 4 7 8 10 11 14 15

16
 Auxiliary area contents 170 061 512 612 503 653 703 154 275

765 426 087 897 677 908 509
 Counts for ten digit distribution 4 2 1 0 0 2 2 3 1 1
 Storage allocation based on these counts 4 6 7 7 7 9 11 14 15 16
 Input area contents 503 703 908 509 512 612 426 653 154 061 765

170 275 677 087 897
 Counts for hundreds digit distribution 2 2 1 0 1 3 3 2 1 1
 Storage allocations based on these counts 2 4 5 5 6 9 12 14 15 16
 Auxiliary area contents 061 087 154 170 275 426 503 509 512 612

653 677 703 765 897 908

7/10/2011 133

 jth key in the final sorted sequence is greater then

exactly (j-1) of other keys. This algorithm is

important because it does not involve any

movement of records

7/10/2011 134

7/10/2011 135

503 087 512 061 908 170 897 275 653 426 154 509 612 677 765 703

i=N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

i=n-

1

0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 12

i=n-

2

0 0 0 0 2 0 2 0 0 0 0 0 0 0 13 12

; 0 0 0 0 3 0 3 0 0 0 0 0 0 11 13 12

; 0 0 0 0 4 0 4 0 1 0 0 0 9 11 13 12

; 0 0 1 0 5 0 5 0 2 0 0 7 9 11 13 12

9 11 13 12

9 11 13 12

i=2 6 1 8 0 15 3 14 4 10 5 2 7 9 11 13 12

 This is only applicable in the case many equal keys

are present, and when all keys fall in the range of

u≤ v where (v-u) is small

7/10/2011 136

 U=0 and v=9

 5, 0, 5,0,9,1,8,2,6,4,1,5,6,6,7,7

 Count 2 2 1 0 1 3 3 2 1 1

 total count 2 4 5 5 6 9 12 14 15 16

 final list 0 0 1 1 2 4 5 5 5 6 6 6 7 7 8 9

7/10/2011 137

 Any binary tree is a heap by virtue of two

properties.

 order : the value at any node is less than or equal

to the values of the node’s children. So least

element of the set is the root of the tree.

 Shape : it has its terminal nodes on at most two

levels, with those on the bottom level as far left as

possible. There is no hole in the tree and there is

no distinction between left and right node

 If an array then we can waste x[0]

7/10/2011 138

 root = 1

 value(i) = x[i]

 leftchild(i)= 2*i

 rightchild(i)=2*i+1

 parent(i) = i/2

 null(i) = i< 1 or i>n

7/10/2011 139

7/10/2011 140

20 15

29

35 40

23 2217

26

12

51 19

A[2] A[3]

A[4]

A[7] A[8]

A[5] A[6]A[6]

A[9]

A[1]

A[10] A[11]

12 20 15 29 23 17 22 35 40 26 51 19

 Sift up

 placing a 13 at x[n] will not yield a heap so re

establishing the property is the job of the function

siftup : it sifts the new element up the tree as far

as it should go, swapping with its parents along the

way. So the loop will end by the check that either it

becomes the root or parent is smaller then the

element

7/10/2011 141

7/10/2011 142

20 15

29

35 40

23 2217

26

12

51 19

20 15

29

35 40

23 2213

26

12

51 19

13

17

20 13

29

35 40

23 2215

26

12

51 19 17

 assigning a new value to x[1] when x[1..n] is a heap

leaves heap(2,n): function siftdown makes

heap(1,n) true. It does so by sifting x[1] down the

array until either it has no children or it is less than

or equal to the children it does have

7/10/2011 143

7/10/2011 144

20 15

29

35 40

23 2217

26

18

51 19

20 18

29

35 40

23 2217

26

15

51 19

20 17

29

35 40

23 2218

26

12

51 19

 A priority queue stores a collection of items

 An item is a pair

(key, element)

 Main methods of the Priority Queue ADT

 insertItem(k, o)

inserts an item with key k and element o

 removeMin()

removes the item with the smallest key

7/10/2011 145

 Additional methods

 minKey(k, o)

returns, but does not remove, the smallest key of an

item

 minElement()

returns, but does not remove, the element of an item

with smallest key

 size(), isEmpty()

 Applications:

 Standby flyers

 Auctions

 Stock market
7/10/2011 146

 Keys in a priority queue can be arbitrary objects on

which an order is defined

 Two distinct items in a priority queue can have the

same key
 Store the items of the priority queue in a list-based sequence, in

arbitrary order

 Performance:

 insertItem takes O(1) time since we can insert the

item at the beginning or end of the sequence

 removeMin, minKey and minElement take O(n) time

since we have to traverse the entire sequence to find

the smallest key
7/10/2011 147

 Store the items of the priority queue in a sequence,

sorted by key

 Performance:
 insertItem takes O(n) time since we have to find the

place where to insert the item

 removeMin, minKey and minElement take O(1) time

since the smallest key is at the beginning of the

sequence

7/10/2011 148

 Insertion taken log(n) time

 removemin(), Minkey(), Minelement() takes O(1)

time.

 Priority queues can be best implemented by the

heap data structure.

 It can be a min heap or max heap as per our

problem requirements

7/10/2011 149

Algorithm Worst

Case

Average Space

comp

In

Place

Stable

Merge Sort Θ(nlogn) Θ(nlogn) Θ(n) No Yes Better

external sort

Heap Sort Θ(nlogn) Θ(nlogn) Θ(n) Yes No

Quick Sort Θ(n2) Θ(nlogn) Θ(n) Yes No

Insertion Sort Θ(n2) Θ(n2) Θ(n) Yes Yes

Selection

Sort

Θ(n2) Θ(n2) Θ(n) Yes Yes

Bubble Sort Θ(n2) Θ(n2) Θ(n) Yes Yes

7/10/2011 150

 Closest pair problem

NC2 pairs.

 For each pair find distance.

 Find the minimum

 No clever thinking, no strategy

7/10/2011 151

 Brute force approach is a straight forward approach

to solve the problem. It is directly based on the

problem statement and the concepts

 It is one of the simplest algorithm design to

implement and covers a wide range of problems

under its gamut

7/10/2011 152

 Partial solution to be extended, every time you

process more input data in incremental stages

 Solution from a smaller sub instance to a larger

subinstance

 Solve a1 then a1,a2 then a1,a2,ai then a1,a2,an

 Finding max, adding numbers, insertion sort

7/10/2011 153

 ------------------------*----------------||--------------------

 You have an infinite wall on both sides where you

are standing and it has a gate somewhere in one

direction, you have to find out the gate,

 no design-infinite time

 incremental design- you go one step in one

direction , come back go to other direction one

step, come back and then go 2 steps in other

direction

7/10/2011 154

 1+2.1+1

 2+2.2+2

 3+2.3+3

 n-1+2.(n-1)+n-1

 n+2n

 4∑i+3n

 4n(n-1)/2+3n=2n2+n

7/10/2011 155

 You go 20 step in one direction, come back go 1 step in other
then 21direction in one way then come back and then up to
2k

 20+2.20+20

 21+2.21+21

 :

 2K-1+2.2K-1+2K-1

 3.2K

 4(2K-1+2K-2+……1)+ 3.2K

 4(2K-1)+ 3.2K

 7.2K -4

 7N-4

7/10/2011 156

 Why increment by 1 but by some I units

 An a16

 An = An/2 An/2

 = A. A(n-1)/2 A(n-1)/2

 =A. A(n-1)

 A107 1101011

instead of n multiplications it uses 2logn multiplications

7/10/2011 157

 Divide and Conquer algorithm design works on the

principle of dividing the given problem into smaller

sub problems which are similar to the original

problem. The sub problems are ideally of the same

size.

 These sub problems are solved independently using

recursion

 The solutions for the sub problems are combined to

get the solution for the original problem

7/10/2011 158

 The Divide and Conquer strategy can be viewed as one

which has three steps.

 The first step is called Divide which is nothing but

dividing the given problems into smaller sub problems

which are identical to the original problem and also

these sub problems are of the same size.

 The second step is called Conquer where in we solve

these sub problems recursively.

 The third step is called Combine where in we combine

the solutions of the sub problems to get the solution for

the original problem

7/10/2011 159

 Decrease by a constant (factorial)

 decrease by constant factor (Binary search)

 decrease by arbitrary value (GCD)

 avoid too much fragmentation

 split carefully

7/10/2011 160

 I divided into I1 and I2

 S1 and S2 are corresponding solutions

 Combine into S

 Quick Sort

 Binary Search

 In quick sort we did not do anything for combining

 In binary search we did not do anything for dividing

7/10/2011 161

 T(n) = aT(n/b) + f(n) if n>= d

 a= # of sub problems

 b size of sub problem

 f(n) time to combine sub problems

7/10/2011 162

7/10/2011 163

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog

<

+

+

-

nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

Case 1: When f(n) is polynomially smaller then the

special function nlog
b

a

2. When f(n) is close to the special function

3. When f(n) is polynomially larger then the special

function

 T(n) = 4 T(n/2)+ n

 Solution: logba=2, so case 1 says T(n) is O(n2).

 T(n) = 2T(n/2) + nlog n

 Solution: logba=1, so case 2 says T(n) is O(n log2 n).

 T(n) = T(n/3) + nlog n

 Solution: logba=0, so case 3 says T(n) is O(n log n).

7/10/2011 164

 How fast we can multiply

 Normally we require n2 complexity to multiply two

numbers

7/10/2011 165

 Multiply two n-bit integers I and J.
 Divide step: Split I and J into high-order and low-order bits

 We can then define I*J by multiplying the parts and
adding:

 So, T(n) = 4T(n/2) + n, which implies T(n) is O(n2).

 But that is no better than the algorithm we learned in
grade school.

7/10/2011 166

l

n

h

l

n

h

JJJ

III

+=

+=

2/

2/

2

2

ll

n

hl

n

lh

n

hh

l

n

hl

n

h

JIJIJIJI

JJIIJI

+++=

++=

2/2/

2/2/

222

)2(*)2(*

7/10/2011 167

ll

n

hllh

n

hh

ll

n

llhhhlhhlllh

n

hh

ll

n

llhhhllh

n

hh

JIJIJIJI

JIJIJIJIJIJIJIJI

JIJIJIJJIIJIJI

+++=

++++--+=

+++--+=

2/

2/

2/

2)(2

2])[(2

2]))([(2*

So, T(n) = 3T(n/2) + n, which implies T(n) is O(nlog
2

3), by the
Master Theorem.

Thus, T(n) is O(n1.585).

ll

n

hl

n

lh

n

hh

l

n

hl

n

h

JIJIJIJI

JJIIJI

+++=

++=

2/2/

2/2/

222

)2(*)2(*

 Suppose we want to multiply two matrices of size N x N: for

example A x B = C.

7/10/2011 168

C11 = a11b11 + a12b21

C12 = a11b12 + a12b22

C21 = a21b11 + a22b21

C22 = a21b12 + a22b22

 2x2 matrix multiplication can be accomplished in 8

multiplication.(2log
2

8 =23)

 Strassen showed that 2x2 matrix multiplication can be

accomplished in 7 multiplication and 18 additions or

subtractions. .(2log
2
7 =22.807)

 This reduction can be done by Divide and Conquer Approach.

7/10/2011 169

7/10/2011 170

A0 A1

A2 A3

B0 B1

B2 B3

A0B0+A1B2 A0B1+A1B3

A2B0+A3B2 A2B1+A3B3

 =

• Divide matrices into sub-matrices: A0 , A1, A2 etc

• Use blocked matrix multiply equations

• Recursively multiply sub-matrices

 Terminate recursion with a simple base case

7/10/2011 171

 P1 = (A11+ A22)(B11+B22)

P2 = (A21 + A22) * B11

P3 = A11 * (B12 - B22)

P4 = A22 * (B21 - B11)

P5 = (A11 + A12) * B22

P6 = (A21 - A11) * (B11 + B12)

P7 = (A12 - A22) * (B21 + B22)

 C11 = P1 + P4 - P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 - P2 + P6

7/10/2011 172

void matmul(int *A, int *B, int *R, int n) {

if (n == 1) {

(*R) += (*A) * (*B);

} else {

matmul(A, B, R, n/4);

matmul(A, B+(n/4), R+(n/4), n/4);

matmul(A+2*(n/4), B, R+2*(n/4), n/4);

matmul(A+2*(n/4), B+(n/4), R+3*(n/4), n/4);

matmul(A+(n/4), B+2*(n/4), R, n/4);

matmul(A+(n/4), B+3*(n/4), R+(n/4), n/4);

matmul(A+3*(n/4), B+2*(n/4), R+2*(n/4), n/4);

matmul(A+3*(n/4), B+3*(n/4), R+3*(n/4), n/4);

}

7/10/2011 173

 Recursive formulation is easy to make

 There are lot of function calls

 lot of book keeping

 Should try an equivalent iterative solution

7/10/2011 174

 Single recursive call is like accessing multiple

recursions from a tree.

 Minmax(A[1..n], min, max)

 if n=1 min=a, max = a

 else if n=2

 if (a1>a2) max=a1 min=a2

 else min=a1 max=a2

 else recurse

7/10/2011 175

 Terminate at slightly higher levels in turn

decreasing the recursive calls

 iteration has less book keeping and less function

calls

7/10/2011 176

7/10/2011 177

6 6

3

2 1

3 33

2

12

1 2

1 1

1 1

1 1

1 1

2

1 1

2n-2

7/10/2011 178

6 6

3

2 1

3 33

2

12

1 2 1 1

2

5n/3-2

7/10/2011 179

4 8

2 2 44

12

2 2 2
2

3n/2 -2

 Greedy design technique is primarily used in
Optimization problems

 The Greedy approach helps in constructing a solution
for a problem through a sequence of steps where each
step is considered to be a partial solution. This partial
solution is extended progressively to get the complete
solution

 The choice of each step in a greedy approach is done
based on the following

 It must be feasible

 It must be locally optimal

 It must be irrevocable

7/10/2011 180

 Optimization problems are problems where in we

would like to find the best of all possible solutions.

In other words we need to find the solution which

has the optimal (maximum or minimum) value

satisfying the given constraints.

 In the greedy approach each step chosen has to

satisfy the constraints given in the problem. Each

step is chosen such that it is the best alternative

among all feasible choices that are available. The

choice of a step once made cannot be changed in

subsequent steps.

7/10/2011 181

7/10/2011 182

 An amount to reach and an collection of coins to
reach to that amount

 Objective is to minimize the number of coins

 Greedy theory says always return the largest coin

 if coins are of denomination 32, 8, 1 it has the
greedy choice property because no amount over 32
can be made without omitting 32

 if coins are of denomination 30,20,5,1 then it does
not have greedy choice property because 40 is best
made with two 20 coins but greedy will return
30,5,5 coins

 An Activity Selection problem is a slight variant of the

problem of scheduling a resource among several

competing activities.

 Suppose that we have a set S = {1, 2, …, n} of n events

that wish to use an auditorium which can be used by

only one event at a time. Each event i has a start time

si and a finish time fi where si < fi. An event i if

selected can be executed anytime on or after si and

must necessarily end before fi. Two events i and j are

said to compatible if they do not overlap (meaning si fj

or sj fi). The activity selection problem is to select a

maximum subset of compatible activities

7/10/2011 183

 1. Begin

 2. Set A = {1}, j = 1

 3. For i = 2 to n do

 2.1 If (si >= fj) then A = A union {i}, j = i

 3. End with output as A

7/10/2011 184

 We are given n objects and a knapsack. Object i

has weight wi and the knapsack has a capacity M. if

a fraction xi, 0<= xi <= 1 of object i is placed into

the knapsack then a profit of pixi is earned. The

objective is to obtain a filling of the knapsack that

maximizes the total profit earned. Since the

knapsack capacity is M, the total weight of all

chosen objects should be M. The profits & weights

are positive.

7/10/2011 185

7/10/2011 186

 Input Set S of items with weight wi and benefit bi with
total weight W

 Output Amount xi of each item i to maximize benefit
with weight at most W

 for each item i in S

 xi=0

 vi=bi/wi

 w=0

 while w<W

 remove item i with highest vi

 xi=min(wi,W-w)

 w=w+min(wi,W-w)

7/10/2011 187

 Suppose there are 3 sorted lists L1, L2, and L3, of

sizes 30, 20, and 10, respectively, which need to be

merged into a combined sorted list but we can

merge only two at a time.

 We intend to find an optimal merge pattern which

minimizes the total number of comparisons.

7/10/2011 188

 merge L1 & L2,: 30 + 20 = 50 comparisons , then

merge the list & L3: 50 + 10 = 60 comparisons

 total number of comparisons: 50 + 60 = 110.

 Alternatively, merge L2 & L3: 20 + 10 = 30

comparisons, the resulting list (size 30) then merge

the list with L1: 30 + 30 = 60 comparisons

 total number of comparisons: 30 + 60 = 90.

7/10/2011 189

7/10/2011 190

 File f has one million characters

 only a,b,c,d,e,f chars come in the file then the

total size of the file is 8 million bits

 if we represent these with 000 001 010 011 101 111

then only 3 million bits

 0 1 00 11 10 11 will give us less then 2 million bits

7/10/2011 191

 assume frequency of occurrence of a, b, c, d, e, f is

45%,13%,12%,16%,9%,5%

 leaves of the binary tree will represent the bit strings

 It will give us the prefix free code

 use optimal merge patterns for making the binary tree

and then assign 0 to every left node and 1 to every

right node

 The nodes with larger frequency will be nearer to the

root and with lesser frequency will be towards the

leaves

7/10/2011 192

7/10/2011 193

55

14 25

131295

16

30

45

100

0

0

1

0
1

0 1

1

0 1

f e c b

d

a

 a b c d e f

 0 111 110 101 1001 1000

 Total = 1*45+3*13+3*12+3*16+4*9+4*5=224

 So total bits used are 2,24,000 bits

7/10/2011 194

 Spanning subgraph

 Subgraph of a graph G containing all the vertices of G

 Spanning tree

 Spanning subgraph that is itself a (free) tree

 Minimum spanning tree (MST)

 Spanning tree of a weighted graph with minimum

total edge weight

 Applications

 Communications networks

 Transportation networks

7/10/2011 195

 Similar to Dijkstra‟s algorithm (for a connected
graph)

 We pick an arbitrary vertex s and we grow the
MST as a cloud of vertices, starting from s

 We store with each vertex v a label d(v) = the
smallest weight of an edge connecting v to a
vertex in the cloud
 We add to the cloud the vertex u outside the cloud with the

smallest distance label

 We update the labels of the vertices adjacent to u

7/10/2011 196

7/10/2011 197

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

7

2

8

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

7

2

5

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
7

2

5

7

7/10/2011 198

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

3

2

5 4

7

B

D

C

A

F

E

7

4

2
8

5

7

3

9

8

0
3

2

5 4

7

 Graph operations
 Method incidentEdges is called once for each vertex

 Label operations
 We set/get the distance, parent and locator labels of vertex z O(deg(z))

times

 Setting/getting a label takes O(1) time

 Priority queue operations
 Each vertex is inserted once into and removed once from the priority

queue, where each insertion or removal takes O(log n) time

 The key of a vertex w in the priority queue is modified at most deg(w)
times, where each key change takes O(log n) time

 Prim-Jarnik‟s algorithm runs in O((n + m) log n) time provided the
graph is represented by the adjacency list structure

 Recall that Sv deg(v) = 2m

 The running time is O(m log n) since the graph is connected

7/10/2011 199

 The algorithm maintains a forest of trees

 An edge is accepted it if connects distinct trees

 We need a data structure that maintains a

partition, i.e., a collection of disjoint sets, with the

operations:

 -find(u): return the set storing u

 -union(u,v): replace the sets storing u and v with

their union

7/10/2011 200

 Each set is stored in a sequence

 Each element has a reference back to the set

 operation find(u) takes O(1) time, and returns the set of

which u is a member.

 in operation union(u,v), we move the elements of the

smaller set to the sequence of the larger set and update

their references

 the time for operation union(u,v) is min(nu,nv), where

nu and nv are the sizes of the sets storing u and v

 Whenever an element is processed, it goes into a set of

size at least double, hence each element is processed at

most log n times

 Running time: O((n+m)log n)
7/10/2011 201

7/10/2011 202

JFK

BOS

MIA

ORD

LAX
DFW

SFO
BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

 A graph is a pair(V,E) where

 V is set of nodes called vertices

 E is a collection of pair of vertices called edges

 vertices and edges are positions and store elements

7/10/2011 203

 ordered pair of vertices(u,v)

 first vertex u is the origin

 second vertex v is the destination

7/10/2011 204

 unordered pair of vertices for example distance

between two cities

 In Directed graph all the edges are directed and in

undirected graph all the edges are undirected

7/10/2011 205

 Electronic circuits

 printed circuit boards

 Integrated Circuits

 Transportation network Highway network , rail
network, flight network, traffic network, electricity
network, water network

 Computer networks

 LAN

 Web

 Databases- ER diagrams

7/10/2011 206

 End vertices of an edge

 U and V are the endpoints of a

 Edge incident on a vertex

 a, d,b are incident on v

 adjacent vertices

 u and v are adjacent

 Degree of a vertex

 x has degree 5

 parallel edges

 h and i are parallel edges

 Self loop

 j is a self loop

7/10/2011 207

 sequence of alternating vertices and edges

 begins with a vertex

 ends with a vertex

 each edge is preceded and followed by its

endpoints

 Simple path- a path such that all edges and vertices

are distinct

 v,b,x,h,z is a simple path

 u,c,w,e,x,g,y,f,w,d,v is not a simple path

7/10/2011 208

 cycle- circular sequence of alternating vertices and

edges

 each edge is preceded and followed by its

endpoints

 Simple cycle : such that all its vertices and edges

are distinct

 v,b,x,g,y,f,w,c,u,a,v is a simple cycle

 u,c,w,e,x,g,y,f,w,d,v,a, u is not a simple cycle

7/10/2011 209

 incidentedges(v)

 endvertices(e)

 isdirected(e)

 origin(e)

 destination(e)

 opposite(v,e)

 areadjacent(v,w)

 insertvertex(o)

 insertedge(v,w,o)

 insertdirectededge(v,w,o)

 removevertex(v)

 removeedge(e)

 numvertices()

 numedges()

7/10/2011 210

 A hash function h maps keys of a given type to
integers in a fixed interval [0,N-1]. The goal of a
hash function is to uniformly disperse keys in the
range [0,N-1]

 Develop a structure that will allow user to
insert/delete/find records in

 constant average time
 structure will be a table (relatively small)

 table completely contained in memory

 implemented by an array

 capitalizes on ability to access any element of the
array in constant time

7/10/2011 211

 Determines position of key in the array.

 Assume table (array) size is N

 Function f(x) maps any key x to an int between 0

and N−1

 For example, assume that N=15, that key x is a non-

negative integer between 0 and MAX_INT, and hash

function f(x) = x % 15

7/10/2011 212

 Let f(x) = x % 15. Then,

 if x = 25 129 35 2501 47 36

 f(x)= 10 9 5 11 2 6

 Storing the keys in the array is straightforward:

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

14

 _ _ 47 _ _ 35 36 _ _ 129 25 2501 _ _

 Thus, delete and find can be done in O(1), and also insert,
except…

7/10/2011 213

 What happens when you try to insert: x = 65 ?

 x = 65

 f(x) = 5

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 _ _47 _ _ 35 36 _ _ 129 25 2501 _ _

65(?)

 This is called a collision.

7/10/2011 214

 Separate Chaining

 Open Addressing

 Linear Probing

 Quadratic Probing

 Double Hashing

7/10/2011 215

 Let each array element be the head of a chain:

 Where would you store: 29, 16, 14, 99, 127 ?

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 16 47 65 36 127 99 25 2501 14

 35 129 29

 New keys go at the front of the relevant chain.

7/10/2011 216

 Parts of the array might never be used.

 As chains get longer, search time increases to O(n)

in the worst case.

 Constructing new chain nodes is relatively

expensive (still constant time, but the constant is

high).

 Is there a way to use the “unused” space in the

array instead of using chains to make more space?

7/10/2011 217

 Let key x be stored in element f(x)=t of the array

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 47 35 36 129 25 2501

 65(?)

 What do you do in case of a collision?

 If the hash table is not full, attempt to store key in array

elements (t+1)%N, (t+2)%N, (t+3)%N …

 until you find an empty slot

7/10/2011 218

 If the hash table is not full, attempt to store key in array

elements (t+1)%N, (t+2)%N, …

 Where would you store: 65,29,16,14,99,127 ?

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 16 47 35 36 65 127 129 25 2501 29 99 14

7/10/2011 219

 Eliminates need for separate data structures

(chains), and the cost of constructing nodes.

 Leads to problem of clustering. Elements tend to

cluster in dense intervals in the array.

 Search efficiency problem remains.

 Deletion becomes trickier….

7/10/2011 220

 Let key x be stored in element f(x)=t of the array

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 47 35 36 129 25 2501

 65(?)

 What do you do in case of a collision?

 If the hash table is not full, attempt to store key in array

elements (t+12)%N, (t+22)%N, (t+32)%N …

 until you find an empty slot.

7/10/2011 221

 If the hash table is not full, attempt to store key in array

elements (t+12)%N, (t+22)%N …

 Where would you store: 65,29,16,14,99,127 ?

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

 29 16 47 14 35 36 127 129 25 2501 99 65

 t

 attempts

7/10/2011 222

 Tends to distribute keys better than linear probing

 Alleviates problem of clustering

 Runs the risk of an infinite loop on insertion, unless

precautions are taken.

 E.g., consider inserting the key 16 into a table of size 16,

with positions 0, 1, 4 and 9 already occupied.

 Therefore, table size should be prime

7/10/2011 223

 Use a hash function for the decrement value
 Hash(key, i) = H1(key) – (H2(key) * i)

 Now the decrement is a function of the key
 The slots visited by the hash function will vary even if the initial

slot was the same
 Avoids clustering

 Theoretically interesting, but in practice slower than
quadratic probing, because of the need to evaluate a
second hash function.

7/10/2011 224

 Choice of hash function

 Collision resolution strategy

 Load Factor

 Hashing offers excellent performance for insertion

and retrieval of data

7/10/2011 225

 Dynamic programming always gives a correct

solution

 Steps:

 Obtain recursive formulation of optimization

problem

 Subproblem space

 Dependency relation -> order in which solutions of

subproblems are to be obtained

 build the solution in that order and get the solution

7/10/2011 226

 Dynamic Programming is a design principle which is

used to solve problems with overlapping sub

problems

 It solves the problem by combining the solutions

for the sub problems

 The difference between Dynamic Programming and

Divide and Conquer is that the sub problems in

Divide and Conquer are considered to be disjoint

and distinct various in Dynamic Programming they

are overlapping

7/10/2011 227

 Simple Subproblems

 We should be able to break the original problem to smaller

subproblems that have the same structure

 Optimal Substructure of the problems

 The solution to the problem must be a composition of

subproblem solutions

 Subproblem Overlap

 Optimal subproblems to unrelated problems can contain

subproblems in common

7/10/2011 228

 Fibonacci Series

 fn=fn-1+fn-2

 f1=1

 f0=0

 fib(n)

 if (n=0 or 1) return n

 else

 fib=fib(n-1) + fib(n-2)

 return fib

7/10/2011 229

7/10/2011 230

5 4

4

3 2

3 23

3

6

2 2

2

1 0

1

1 0

1 0

1
0

1 0

2 1

1 0

1

 It will be exponential recursive call.

 we are repeating the computation of common
overlapping sub problems

 “if you forget the past you are condemned to
repeat it”
f[0] f[1] f[2] f[3] f[4] f[5] f[6]

 fib(n)

 if f[n]<> -1 then return f[n]

 else f[n] = fib(n-1)+fib(n-2)

 return f[n]

 from exponential to linear

7/10/2011 231

7/10/2011 232

6

5 4

4 3

3 2

2 1

1 0

6

5 4

4 3

3 2

2 1

1 0

1 0

1 1

2 1

3 2

5 3

8

 Applies to a problem that at first seems to require a

lot of time (possibly exponential), provided we

have:

 Simple subproblems: the subproblems can be defined

in terms of a few variables, such as j, k, l, m, and so

on.

 Subproblem optimality: the global optimum value can

be defined in terms of optimal subproblems

 Subproblem overlap: the subproblems are not

independent, but instead they overlap (hence, should

be constructed bottom-up).

7/10/2011 233

 B is 3 × 100

 C is 100 × 5

 D is 5 × 5

 (B*C)*D takes 1500 + 75 = 1575 ops

 B*(C*D) takes 1500 + 2500 = 4000 ops

7/10/2011 234

 Original matrix chain product

A x B x C x D x E (ABCDE for short)

 Calculate in advance the cost (multiplies)

AB, BC, CD, DE

 Use those to find the cheapest way to form

ABC, BCD, CDE

 then

 ABCD,BCDE

 From that derive best way to form

ABCDE

7/10/2011 235

 Try all possible ways to parenthesize A=A0*A1*…*An-1

 Calculate number of ops for each one

 Pick the one that is best

 Running time:
 The number of paranethesizations is equal to the

number of binary trees with n nodes

 This is exponential!

 It is called the Catalan number, and it is almost 4n.

 This is a terrible algorithm!

7/10/2011 236

 I‟ is the subscript of the first matrix in the sub
problem

 „j‟ is the subscript of the last

 „k‟ is the subscript for the way to break Ai,j into sub
problems Ai,k and Ak+1,j

 The problem of determining the optimal sequence
of multiplications is broken into two parts

 How do we decide where to split the chain(which k)

 try for all values of k

 how do we parenthesize the sub chains from A1..k

and Ak+1…n

7/10/2011 237

 The optimal cost can be described as follows

 if i=j then sequence contains only 1 matrix so

m[i,j]=0

 i<j then min (m[i,k]+m[k+1,j] +d0dkdj)

7/10/2011 238

7/10/2011 239

 Given: A set S of n items, with each item i having
 bi - a positive benefit

 wi - a positive weight

 Goal: Choose items with maximum total benefit but
with weight at most W.

 If we are not allowed to take fractional amounts, then
this is the 0/1 knapsack problem.
 In this case, we let T denote the set of items we take

 Objective: maximize benefit

 Constraint the knapsack weight should not exceed W

7/10/2011 240

7/10/2011 241

Weight:

Benefit:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in

$20 $3 $6 $25 $80
9 in

Solution:

• 5 (2 in)

• 3 (2 in)

• 1 (4 in)

“knapsack”

7/10/2011 242

 Sk: Set of items numbered 1 to k.

 Define B[k,w] = best selection from Sk with weight exactly
equal to w

 this does have subproblem optimality:

 I.e., best subset of Sk with weight exactly w is either the
best subset of Sk-1 w/ weight w or the best subset of Sk-1

w/ weight w-wk plus item k.

+---

>-
=

else}],1[],,1[max{

 if],1[
],[

kk

k

bwwkBwkB

wwwkB
wkB

 Running time: O(nW).

 Not a polynomial-time algorithm if W is large

 This is a pseudo-polynomial time algorithm

Algorithm 01Knapsack(S, W):

Input: set S of items w/ benefit bi and weight wi;
max. weight W

Output: benefit of best subset with weight at most W

for w 0 to W do

B[w] 0

 for i = 1 to n

 B[i,0] = 0

for k 1 to n do

for w W downto wk do

if B[w-wk]+bk > B[w] then

B[w] B[w-wk]+bk 7/10/2011 243

0 1 2 3 4 5 6 7 8 9 Item:W,P

1 : 4,20

2: 2,3

3 : 2,6

4 : 6,25

5 :2,80

0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 20 20 20 20 20 20

2 0 0 3 3 20 20 23 23 23 23

3 0 0 6 6 20 20 26 26 29 29

4 0 0 6 6 20 20 26 26 31 31

5 0 0 80 80 86 86 100 100 106 106

7/10/2011 244

 Suitable paradigm where output is a subset of input

 not proper for sorting or computing a formula

 Raman Maharishi said “Who am I” Use pruning

 Binary Search always pruning 50%

7/10/2011 245

 S= {14,10,24,7,9,1} ={a1,a2,a3,a4,a5,a6}

 Output all subsets who add upto 31 or return empty

 31= {14,10,7} = {a1,a2,a4}

 = {24,7} ={a3,a4}

 ={14,9,1,7} {a1,a4,a5,a6}

 Total 2n subsets

7/10/2011 246

7/10/2011 247

a1 a1

a2

a3 a3

a2 a2a2

a3

a3 a3

a4 a4

a3 a3

a4 a4

a4 a4

a3

a4 a4

a4 a4 a4 a4
a4 a4

a4 a4

ε

ε

ε

ε ε

ε

εε

ε

ε ε

ε

ε

ε

ε

a1+a2+a3+a4

a1+a3+a4 a2+a4

 Partial sum at a particular level

 A[1]=a1…an

 a[2]=a2…an

 a[i]=ai…an

 a[n]=an

 PS+ai …………………+an <M

7/10/2011 248

 In this method we search all state space methods

before any other node can become the live node. The

search for a new node can not begin until the current

node is not fully explored, As in case of backtracking,

bounding functions are used to avoid the generation of

subtrees that don‟t contain an answer node.

7/10/2011 249

 Using Dynamic programming Problem we get an

O(n22n) algorithm for travelling salesman problem.

 TSP is that given a graph where nodes are cities and

edge weights are the cost of travelling from one

city to another city. We have to find a minimum

cost tour if one salesman starts from a city and can

come back to the same city in minimum cost.

7/10/2011 250

1 2 3 4 5

1 ∞ 20 30 10 11
2 15 ∞ 16 4 2
3 3 5 ∞ 2 4
4 19 6 18 ∞ 3
5 16 4 7 16 ∞

7/10/2011 251

∞ so as to avoid any
path to the same city in our tour

7/10/2011 252

1 2 3 4 5 Row reduction

1 ∞ 20 30 10 11 10

2 15 ∞ 16 4 2 2

3 3 5 ∞ 2 4 2

4 19 6 18 ∞ 3 3

5 16 4 7 16 ∞ 4

21

1 2 3 4 5

1 ∞ 10 20 0 1

2 13 ∞ 14 2 0

3 1 3 ∞ 0 2

4 16 3 15 ∞ 0

5 12 0 3 12 ∞

column 1 0 3 0 0

7/10/2011 253

1 2 3 4 5

1 ∞ 10 17 0 1

2 12 ∞ 11 2 0

3 0 3 ∞ 0 2

4 15 3 12 ∞ 0

5 11 0 0 12 ∞

column 1 0 3 0 0 4

 So we got the reduced cost matrix and all the tours in
the original graph will have at least cost of 25. Now we
are looking for a reduced cost matrix where every tour
starts at one and ends at one. We have to make a
solution space tree. Let R is the resulting matrix we got
above then (R,S) means including node S in our tour.
The reduced cost matrix for that can be obtained by
Changing all entries in row i and column j to ∞. This
prevents any more edges leaving vertex i or entering

vertex j and also Set A(j,1) to ∞. This prevents the use
of edge (j,1). Reduce all rows and columns in the
resulting matrix except for rows and columns containing
only ∞.

7/10/2011 254

7/10/2011 255

1 2 3 4 5

1 ∞ 10 17 0 1

2 12 ∞ 11 2 0

3 0 3 ∞ 0 2

4 15 3 12 ∞ 0

5 11 0 0 12 ∞

1,2 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 ∞ ∞ 11 2 0 0

3 0 ∞ ∞ 0 2 0

4 15 ∞ 12 ∞ 0 0

5 11 ∞ 0 12 ∞ 0

0 0 0 0 0 Total cost =25+10=35

7/10/2011 256

1 2 3 4 5

1 ∞ 10 17 0 1

2 12 ∞ 11 2 0

3 0 3 ∞ 0 2

4 15 3 12 ∞ 0

5 11 0 0 12 ∞

1,3 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 1 ∞ ∞ 2 0 0

3 ∞ 3 ∞ 0 2 0

4 4 3 ∞ ∞ 0 0

5 0 0 ∞ 12 ∞ 0

11 0 0 0 0 Total cost =25+11+17=53

7/10/2011 257

1 2 3 4 5

1 ∞ 10 17 0 1

2 12 ∞ 11 2 0

3 0 3 ∞ 0 2

4 15 3 12 ∞ 0

5 11 0 0 12 ∞

1,4 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 12 ∞ 11 ∞ 0 0

3 0 3 ∞ ∞ 2 0

4 ∞ 3 12 ∞ 0 0

5 11 0 0 ∞ ∞ 0

0 0 0 0 0 Total cost =25+0=25

7/10/2011 258

1 2 3 4 5

1 ∞ 10 17 0 1

2 12 ∞ 11 2 0

3 0 3 ∞ 0 2

4 15 3 12 ∞ 0

5 11 0 0 12 ∞

1,5 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 10 ∞ 9 0 ∞ 2

3 0 3 ∞ 0 ∞ 0

4 12 0 9 ∞ ∞ 3

5 ∞ 0 0 12 ∞ 0

0 0 0 0 0 Total cost =25+5+1=31

7/10/2011 259

1,4 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 12 ∞ 11 ∞ 0 0

3 0 3 ∞ ∞ 2 0

4 ∞ 3 12 ∞ 0 0

5 11 0 0 ∞ ∞ 0

0 0 0 0 0 Total cost =25+0=25

1,4,2 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 ∞ ∞ 11 ∞ 0 0

3 0 ∞ ∞ ∞ 2 0

4 ∞ ∞ ∞ ∞ ∞ 0

5 11 ∞ 0 ∞ ∞ 0

0 0 0 0 0 Total cost =25+3=28

7/10/2011 260

1,4 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 12 ∞ 11 ∞ 0 0

3 0 3 ∞ ∞ 2 0

4 ∞ 3 12 ∞ 0 0

5 11 0 0 ∞ ∞ 0

0 0 0 0 0 Total cost =25+0=25

1,4,3 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 1 ∞ ∞ ∞ 0 0

3 ∞ 1 ∞ ∞ 0 2

4 ∞ ∞ ∞ ∞ ∞ 0

5 0 0 ∞ ∞ ∞ 0

11 0 0 0 0 Total cost =25+13+12=50

7/10/2011 261

1,4 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 12 ∞ 11 ∞ 0 0

3 0 3 ∞ ∞ 2 0

4 ∞ 3 12 ∞ 0 0

5 11 0 0 ∞ ∞ 0

0 0 0 0 0 Total cost =25+0=25

1,4,5 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 1 ∞ 0 ∞ ∞ 11

3 0 3 ∞ ∞ ∞ 0

4 ∞ ∞ ∞ ∞ ∞ 0

5 ∞ 0 0 ∞ ∞ 0

0 0 0 0 0 Total cost =25+11+0=36

7/10/2011 262

1,4,2 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 ∞ ∞ 11 ∞ 0 0

3 0 ∞ ∞ ∞ 2 0

4 ∞ ∞ ∞ ∞ ∞ 0

5 11 ∞ 0 ∞ ∞ 0

0 0 0 0 0 Total cost =25+3=28

1,4,2,3 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 ∞ ∞ ∞ ∞ ∞ 0

3 ∞ ∞ ∞ ∞ 0 2

4 ∞ ∞ ∞ ∞ ∞ 0

5 0 ∞ ∞ ∞ ∞ 11

0 0 0 0 0 Total cost =28+13+11=52

7/10/2011 263

1,4,2 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 ∞ ∞ 11 ∞ 0 0

3 0 ∞ ∞ ∞ 2 0

4 ∞ ∞ ∞ ∞ ∞ 0

5 11 ∞ 0 ∞ ∞ 0

0 0 0 0 0 Total cost =25+3=28

1,4,2,5 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 ∞ ∞ ∞ ∞ ∞ 0

3 0 ∞ ∞ ∞ ∞ 0

4 ∞ ∞ ∞ ∞ ∞ 0

5 ∞ ∞ 0 ∞ ∞ 0

0 0 0 0 0 Total cost =28+0=28

7/10/2011 264

1,4,2,5 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 ∞ ∞ ∞ ∞ ∞ 0

3 0 ∞ ∞ ∞ ∞ 0

4 ∞ ∞ ∞ ∞ ∞ 0

5 ∞ ∞ 0 ∞ ∞ 0

0 0 0 0 0 Total cost =28+0=28

1,4,2,5,3 1 2 3 4 5

1 ∞ ∞ ∞ ∞ ∞ 0

2 ∞ ∞ ∞ ∞ ∞ 0

3 ∞ ∞ ∞ ∞ ∞ 0

4 ∞ ∞ ∞ ∞ ∞ 0

5 ∞ ∞ ∞ ∞ ∞ 0

0 0 0 0 0 Total cost =28+0=28

7/10/2011 265

1

2 3 4 5

6 7 8

11

109

35

25

53 25 31

28 50

52

28

28

36

 The output will be a matrix A such that A(i,j) is the

length of the shortest path from I to j.

 One of the methods is to run dijkstra V times with

each v є V, but there should not be any negative

weight edges in E & time will be O(n3)

 We will use an dynamic algorithm called Floyd-

Warshall algorithm that allows negative edge weight

but no negative weight cycles.

7/10/2011 266

 If k is an intermediate vertex on this shortest path

from i to j then the subpaths from i to k and k to j

must be shortest paths from I to k & k to j

respectively, but we don‟t know k.

Using d(k)
(i,j) to represent the length of a shortest path

from i to j going through {1,2,……K}

7/10/2011 267

D(0) is original adjacency matrix

D(n) is the matrix to be computed

D(k) is D(k) [i,j] = d(k)
ij = min(d(k-1)

ij, d
(k-1)

ik, d
(k-1)

kj)

The idea is to find all the vertices reachable using
intermediate nodes in the range 1. (D(1)), save the
matrix & use it to find all vertices reachable using
intermediate vertices in the range 1..2 (D(2)) and so on
upto D(n)

7/10/2011 268

n = rows[A]

D(0) = A

For k = 1 to n do

For i = 1 to n do

For j = 1 to n do

d(k)
ij = min(d(k-1)

ij, d
(k-1)

ik, d
(k-1)

kj)

Return D(n)

7/10/2011 269

7/10/2011 270

1

2

3

4 5

3 4

8

-4

6

-5
2

7

1

7/10/2011 271

D1 1 2 3 4 5

1 0 3 8 -4 ∞

2 ∞ 0 ∞ 7 1

3 ∞ 4 0 ∞ ∞

4 ∞ ∞ ∞ 0 6

5 2 ∞ -5 ∞ 0

7/10/2011 272

d2 1 2 3 4 5

1 0 3 8 -4 2

2 3 0 -4 7 1

3 ∞ 4 0 11 5

4 8 ∞ 1 0 6

5 2 -1 -5 -2 0

7/10/2011 273

D4 1 2 3 4 5

1 0 1 -3 -4 2

2 3 0 -4 -1 1

3 7 4 0 3 5

4 8 5 1 0 6

5 2 -1 -5 2 0

 These are the kind of problems which have various

steps and one option to be selected in every step.

Many problems can be converted to multi stage

graph.

 If any problem can be converted to a multi stage

graph then that can also be solved with dynamic

programming.

7/10/2011 274

7/10/2011 275

S T
132

B E

9

A D
4

C F
2

1

5

11

5

16

18

2

The greedy method can not be applied to this case:
(S, A, D, T) 1+4+18 = 23.
The real shortest path is: (S, C, F, T) 5+2+2 = 9

 d(S, T) = min{1+d(A, T), 2+d(B, T), 5+d(C, T)}

7/10/2011 276

S T
2

B

A

C

1

5
d(C, T)

d(B, T)

d(A, T)

A

T

4

E

D

11
d(E, T)

d(D, T)

7/10/2011 277

 d(B, T) = min{9+d(D, T), 5+d(E, T), 16+d(F, T)}

= min{9+18, 5+13, 16+2} = 18.

 d(C, T) = min{ 2+d(F, T) } = 2+2 = 4

 d(S, T) = min{1+d(A, T), 2+d(B, T), 5+d(C, T)}

= min{1+22, 2+18, 5+4} = 9

B T
5

E

D

F

9

16
d(F, T)

d(E, T)

d(D, T)

7/10/2011 278

(1) (1,3)

(1,2)

(1,4)

2

5

10

(1,2,3)

(1,2,4)

(1,3,2)

(1,3,4)

(1,4,2)

(1,4,3)

9

3

4

8

7

¡Û

(1,2,3,4)

(1,2,4,3)

(1,3,2,4)

(1,3,4,2)

(1,4,2,3)

(1,4,3,2)

¡Û

4

7

8

9

3

1

4

6

6

2

4

2

A multistage graph can describe all possible tours
of directed graph. Find the shortest path
(1, 4, 3, 2, 1) 5+7+3+2=17

 Depth-first search (DFS) is a general technique for
traversing a graph

 A DFS traversal of a graph G
 Visits all the vertices and edges of G

 Determines whether G is connected

 Computes the connected components of G

 Computes a spanning forest of G

 DFS on a graph with n vertices and m edges
takes O(n + m) time

 DFS can be further extended to solve other
graph problems

7/10/2011 279

7/10/2011 280

DB

A

C

E

DB

A

C

E

DB

A

C

E

discovery edge

back edge

A visited vertex

A unexplored vertex

unexplored edge

7/10/2011 281

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

 Property 1

 DFS(G, v) visits all the vertices and edges in the connected component of v

 Property 2

 The discovery edges labeled by DFS(G, v) form a spanning tree of the connected

component of v

 Setting/getting a vertex/edge label takes O(1) time

 Each vertex is labeled twice

 once as UNEXPLORED

 once as VISITED

 Each edge is labeled twice

 once as UNEXPLORED

 once as DISCOVERY or BACK

 Method incidentEdges is called once for each vertex

 DFS runs in O(n + m) time provided the graph is represented by the adjacency list

structure

7/10/2011 282

 Breadth-first search (BFS) is a general technique for
traversing a graph

 A BFS traversal of a graph G
 Visits all the vertices and edges of G

 Determines whether G is connected

 Computes the connected components of G

 Computes a spanning forest of G

 BFS on a graph with n vertices and m edges takes O(n +

m) time

 BFS can be further extended to solve other graph

problems
 Find and report a path with the minimum number of edges

between two given vertices

 Find a simple cycle, if there is one
7/10/2011 283

7/10/2011 284

CB

A

E

D

discovery edge

cross edge

A visited vertex

A unexplored vertex

unexplored edge

L0

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F

7/10/2011 285

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

7/10/2011 286

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

 Setting/getting a vertex/edge label takes O(1) time

 Each vertex is labeled twice
 once as UNEXPLORED

 once as VISITED

 Each edge is labeled twice
 once as UNEXPLORED

 once as DISCOVERY or CROSS

 Each vertex is inserted once into a sequence Li

 Method incidentEdges() is called once for each vertex

 BFS runs in O(n + m) time provided the graph is
represented by the adjacency list structure

7/10/2011 287

 A string is a sequence of characters

 Examples of strings:
 C++ program

 HTML document

 DNA sequence

 Digitized image

 An alphabet S is the set of possible characters for a
family of strings

 Example of alphabets:
 ASCII (used by C and C++)

 Unicode (used by Java)

 {0, 1}

 {A, C, G, T}

7/10/2011 288

 Let P be a string of size m
 A substring P[i .. j] of P is the subsequence of P consisting of the

characters with ranks between i and j

 A prefix of P is a substring of the type P[0 .. i]

 A suffix of P is a substring of the type P[i ..m - 1]

 Given strings T (text) and P (pattern), the pattern
matching problem consists of finding a substring of T
equal to P

 Applications:
 Text editors

 Search engines

 Biological research

7/10/2011 289

 The brute-force pattern matching algorithm compares the pattern
P with the text T for each possible shift of P relative to T, until
either
 a match is found, or

 all placements of the pattern have been tried

 Brute-force pattern matching runs in time O(nm)

 Example of worst case:
 T = aaa … ah

 P = aaah

 may occur in images and DNA sequences

 unlikely in English text

7/10/2011 290

 Algorithm BruteForceMatch(T, P)

 Input text T of size n and pattern
P of size m

 Output starting index of a
substring of T equal to P or -1
if no such substring exists

 for i 0 to n - m
 { test shift i of the pattern }
 j 0
 while j < m T[i + j] = P[j]
 j j + 1
 if j = m
 return i {match at i}
 else
 break while loop {mismatch}
 return -1 {no match anywhere}

7/10/2011 291

7/10/2011 292

 The Boyer-Moore‟s pattern matching algorithm is based on two
heuristics

Looking-glass heuristic: Compare P with a subsequence of T moving
backwards

Character-jump heuristic: When a mismatch occurs at T[i] = c

 If P contains c, shift P to align the last occurrence of c in P with T[i]

 Else, shift P to align P[0] with T[i + 1]

 Example

1

a p a t t e r n m a t c h i n g a l g o r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

r i t h m

2

3

4

5

6

7891011

Boyer-Moore Heuristics

 Algorithm BoyerMooreMatch(T, P, S)

 L lastOccurenceFunction(P, S)

 i m - 1

 j m - 1

 repeat
 if T[i] = P[j]
 if j = 0
 return i { match at i }
 else
 i i - 1
 j j - 1
 else
 { character-jump }
 l L[T[i]]
 i i + m – min(j, 1 + l)
 j m - 1
 until i > n - 1
 return -1 { no match }

7/10/2011 293

7/10/2011 294

1

a b a c a a b a d c a b a c a b a a b b

234

5

6

7

891012

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

a b a c a b

1113

 Boyer-Moore‟s algorithm runs in time O(nm + s)

 Example of worst case:

 T = aaa … a

 P = baaa

 The worst case may occur in images and DNA sequences but is

unlikely in English text

 Boyer-Moore‟s algorithm is significantly faster than the brute-force

algorithm on English text

7/10/2011 295

7/10/2011 296

11

1

a a a a a a a a a

23456

b a a a a a

b a a a a a

b a a a a a

b a a a a a

7891012

131415161718

192021222324

 Knuth-Morris-Pratt‟s algorithm compares the

pattern to the text in left-to-right, but shifts

the pattern more intelligently than the brute-

force algorithm.

 When a mismatch occurs, what is the most we

can shift the pattern so as to avoid redundant

comparisons?

 Answer: the largest prefix of P[0..j] that is a

suffix of P[1..j]

7/10/2011 297

7/10/2011 298

x

j

. . a b a a b

a b a a b a

a b a a b a

No need to

repeat these

comparisons

Resume

comparing

here

 Knuth-Morris-Pratt‟s algorithm preprocesses the

pattern to find matches of prefixes of the

pattern with the pattern itself

 The failure function F(j) is defined as the size

of the largest prefix of P[0..j] that is also a suffix

of P[1..j]

 Knuth-Morris-Pratt‟s algorithm modifies the

brute-force algorithm so that if a mismatch

occurs at P[j] T[i] we set j F(j - 1)

7/10/2011 299

7/10/2011 300

j 0 1 2 3 4 5

P[j] a b a a b a

F(j) 0 0 1 1 2 3

x

j

. . a b a a b

a b a a b a

F(j - 1)

a b a a b a

 The failure function can be represented by an array and can be

computed in O(m) time

 At each iteration of the while-loop, either

 i increases by one, or

 the shift amount i - j increases by at least one (observe that F(j - 1) < j)

 Hence, there are no more than 2n iterations of the while-loop

 Thus, KMP‟s algorithm runs in optimal time O(m + n)

7/10/2011 301

 Algorithm KMPMatch(T, P)

 F failureFunction(P)

 i 0

 j 0

 while i < n
 if T[i] = P[j]
 if j = m - 1
 return i - j { match }
 else
 i i + 1
 j j + 1
 else
 if j > 0
 j F[j - 1]
 else
 i i + 1
 return -1 { no match }

7/10/2011 302

7/10/2011 303

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

j 0 1 2 3 4 5

P[j] a b a c a b

F(j) 0 0 1 0 1 2

 Genetic programming (GP) is an evolutionary

algorithm based methodology inspired by biological

evolution to find computer programs that perform a

user-defined task. It is a specialization of genetic

algorithms where each individual is a computer

program. Therefore it is a machine learning

technique used to optimize a population of

computer programs according to a fitness landscape

determined by a program's ability to perform a

given computational task.

7/10/2011 304

1. Generate random “programs”

2. Evaluate programs using training data

3. Modify population of programs using cross-over

and mutation

4. If a good program is found, finish, else go to 2

7/10/2011 305

 Gene : A section of genetic code that represents a single

parameter to a solution

 Allele : The value stored in a gene

 Chromosome : The collection of genes sufficient to

completely describe a possible solution to a program

 Genome : all the chromosomes of an individual organism

 genotype : the values of a genome

 problem space: the area of all possible problem instances

 Solution space: similar to the problem space but defined

by the solution parameters

7/10/2011 306

 Individual (Chromosome) = Possible solution

 Population = A collection of possible solutions

 Fitness = Goodness of solutions

 Selection (Reproduction) = Survival of the fittest

 Crossover = Recombination of partial solutions

 Mutation = Alteration of an existing solution

7/10/2011 307

 Reproduction: make copies of chromosome (the

fitter the chromosome, the more copies)

 10000100• 10000100 10000100

 Crossover: exchange subparts of two chromosomes

 100| 00100 10011111

 111|11111 11100100

 Mutation: randomly flip some bits

 00000100 00000000

7/10/2011 308

7/10/2011 309

 Measure the performance of the candidate

programs on the training data

 For example: Fitness is the number of output values

generated by the program which come within 20%

of the correct values.

7/10/2011 310

 Robot motion

 Image recognition

 Facility layout problems

 Data mining

 bio-computing

7/10/2011 311

 A computer is an approximate device when working with
real numbers.

 To begin with, the real number is represented only
approximately. Calculations on real numbers have
truncation and roundoff errors which creep in due to
finite precision.

 The rules of arithmetic – distributivity, associativity, etc
may not be exactly met. There are specific properties
which finite precision implementations like those
following the IEEE-754 and IEEE-854 standard have to
meet.

 Two different formulae which look the same in exact
arithmetic can have considerable different error
properties when in finite precision arithmetic.

7/10/2011 312

 Decimal Numbers cannot be exactly represented in the

current floating-point standard implemented on most

 machines (IEEE754)

 •0.1

 •We cannot enter this value exactly on a Form on a

page!

 •It is taken to be
0.0999999999999999500399638918679556809365749359130859375

 •Will cause errors, even if all subsequent calculations

exact!

7/10/2011 313

 Do not rely on exact comparisons between two floating
point variables, since there will typically be errors in

 calculating the value of the variables, making the
comparison inexact.

 If EPSILON is the tolerance,

 to compare two floating point values x and y, do

 if (abs(x – y) <= EPSILON) then

 x=y

 else

 x!=y

 end

7/10/2011 314

 The stock market trades 10,000’s Crores every

day!

 The total funds in should match the total funds +

fee out very accurately (1 part in 1016 or better),

 IEEE754 accuracy, with 15/16 decimal digits may

not be sufficient for certain classes of financial

calculations, and we may have to use more precise

arithmetic – e.g. variants of IEEE754 and/or IEEE854

7/10/2011 315

 Large Corporate Deposit Rs 10,000 Crores

 – 5% Interest P/A, Rs 500 Crores

Even 0.01% Inaccuracy in calculation

 – Loss of Rs 5 Lakhs to Corporation (Can be software
hacker’s gain!)

Example: Sales tax calculation

 – 5% tax on a short ATM transaction priced at US $0.70,
round to cents

 – Binary, double precision is 0.73499999999999999-
which is rounded to $0.73

 – Exact Decimal calculation: $0.735 => Round upto
$0.74!

 – 1.37% error, completely unacceptable!

7/10/2011 316

 Financial Calculations require some of the highest precision
computations. This is because of the huge volumes of money
which modern financial institutions like banks/ stock exchanges
handle. Even small relative errors in calculation can lead to
large errors, with possible legal consequences. Again, small
errors in calculating parameters like interest rates, etc. can
have major impact on a bank’s balance sheet.

 Currently special hardware at 30+ digit accuracy is being
developed for demanding financial applications. (e.g. IBM is
implementing a FP ALU with large number of digits).

 Binary Representations are not very accurate enough for
financial calculations. Even the small errors which IEEE-754
makes are significant for demanding financial applications

7/10/2011 317

 A large number of classical graph algorithms depend on the
associativity and commutativity properties of the metric
used. In simple terms, the cost or the total length should be
the same, no matter in what order you add the edges in.

 Unfortunately, with finite precision arithmetic, these
properties DO NOT exactly hold, and the algorithms assuming
them cannot guarantee the best solution. They will typically
get a good close-to-optimal solution. For some applications in
finance (e.g. arbitrage, multicurrency

 large volume electronic stock exchanges), with the highest
accuracy requirements, this may not be good enough, and
modifications/alternatives have to be devised.

7/10/2011 318

 An example of these issues in in balancing books in finance (flow
conservation), using inaccurate arithmetic.

 Detecting large violations of flow conservation is simply performed
by comparing total inflow versus total outflow at all nodes.

 If the money outflow is less than the inflow, there is either an
account not accounted for, or electronic-money is vanishing (which
is not acceptable in any entity other than the Central bank)

 If the money outflow is greater than the inflow, then some
unaccounted capital reserve is being depleted, or else money is
being generated (not acceptable in any entity other than the
Central Bank)

 Detecting small violations is much more difficult. Basically, the
output flow may not be equal to the input flow exactly, and may be
slightly less than, greater than, or equal to the input.

 The difference may also change with changes in the input.
Detecting systematic violations of flow conservation requires
statistical tests in general

7/10/2011 319

 Power is an important criteria to be considered while

designing embedded systems, sensor networks, etc

 • A majority of the digital logic IC’s today are made

from CMOS technology.

 This technology dissipates energy primarily while

transitioning from one state to another (bit flip), and

very little energy is required to just maintain the state.

 As such, if for an algorithm, the changes of state of the

registers and/or memory units are reduced, power

efficiency is improved.

7/10/2011 320

 Address (# of bit changes)

 000

 001 (1)

 010 (2)

 011 (1)

 100 (3)

 101 (1)

 110 (2)

 111 (1)

7/10/2011 321

 000

 001 (1)

 011 (1)

 010 (1)

 110 (1)

 111 (1)

 101 (1)

 100 (1)

7/10/2011 322

 Throughout the IT industry, fault tolerance and data resiliency is
becoming increasingly important. Some of the dimensions of this
very important area are:

 Systems have to be up 24 hours a day, 7 days a week, 365 days a
year (ideally). Many banks, financial institutions, e-commerce sites,
sports/news sites, etc require this.

 Clustering/hot-standby systems are some of the techniques for this
purpose.

 Data is precious. It has to be accurately maintained, irrespective of
hardware/software failures of the IT infrastructure. Accounts in a
bank have to be maintained accurately for many years, maybe
decades.

 Various forms of RAID (redundant arrays of independent disks)
arrays, replication, mirroring to remote sites, etc are used.

 The techniques used to build fault tolerant systems typically
introduce communication and/or synchronization, which can have a
major impact on algorithm performance (it can be the dominant
effect).

7/10/2011 323

 Two copies of data are maintained, in physically

diverse locations. Typically, due to the overhead of

communication and maintaining synchronization

between these copies, the locations can be at most

100-200 Km from each other. This system is resilient

to outages at one site, but not to area wide

outages, e.g. a flood affecting the whole city

7/10/2011 324

 For more resiliency, data has to be copied to locations 1000’s of Km
distant. Maintaining exact synchronism of the copies is generally
not cost-effective in this situation. The remote copy is typically a
few transactions behind the master and the local copy (some
transactions have been committed and

 written to the master and the local copy, but not the remote copy).
Recovery of data from the remote site may not be complete.
Minimizing communication bandwidth to the remote copy is a
major/dominant algorithmic issue, here, since each remote access
is very expensive.

 Conclusion:

 Algorithms designed resiliency have to work with and keep multiple
copies of data. Consistency amongst these copies is an issue.

 The analysis of algorithms taking into account data resiliency due
to distribution of the data at multiple places has to take
communication and/or synchronization time into account.

7/10/2011 325

 Two or more users access a database concurrently

 Problems associated with concurrent execution:

 Lost update

 Dirty read

 Non repeatable read

 Phantom records

7/10/2011 326

Murugan’s Deposit Balance Narsimhulu’s

Deposit

5.22 Read Balance(1500) 1500

5.23 Balance=1500+2000

5.24 Read

Balance(1500)

5.25 Write New

Balance(3500)

3500

5.26 Commit

5.27 Balance=1500+18

00

5.28 3300 Write new

balance(3300)

5.29 Commit

7/10/2011 327

7/10/2011 328

Jahfar’s Deposit Balance Riji’s Deposit

5.22 Read Balance(1500) 1500

5.23 Balance=1500+2000

5.24 Write New

Balance(3500)

3500

5.25 Read Balance(1500)

5.26 Rollback

5.27 Balance=1500+3500

5.28 5300 Write new

balance(5300)

5.29 Commit

7/10/2011 329

Shailesh’s Transfer Balance

5.22 Read Shailesh Balance(1500) 1500 Sum=0

5.23 Balance=1500-500 Read Shailesh’s Balance

5.24 Write New Balance(1000) 1000

5.25 Sum=Sum+ Balance(1500)

5.26 Read Sidharth

Balance(1500)

1500

5.27 Balance=1500+500

5.28 Write new balance(2000) 2000

5.29 Commit 2000

5.30 Read Sidharth’s

Balance(2000)

Sum=sum+balance(3500)

3000 Write sum(3500)

Commit

7/10/2011 330

Jahfar’s Deposit Balance Riji’s Deposit

5.22

5.23 Read total number of

accounts in the bank

5.24

5.25 Create account for

Arjan

5.26 Create Account for

Nisarg

5.27 Create Account for

Jainul

5.28 Commit

5.29 Write Total

5.30 Commit

 To make every transaction follow each other.

 Achieved by setting following rules on transactions:

 If any row is being modified, then do not allow any
other transaction either to read or write that row until
the first transaction completes.

 If a transaction is reading a particular row, prevent
other transactions from making any changes to that row
until the first transaction completes.

 If a transaction is reading some data, do not allow any
other transaction to insert new rows into the same table
until the first transaction completes. This will avoid
problems like phantom records.

7/10/2011 331

7/10/2011 332

7/10/2011 333

Transaction ATM update Transaction Loan update

5.22 Lock ATM Data table Lock Loan data table

5.23 Update ATM details Update loan details

5.24 Try lock on loan table Try lock on atm table

5.25 Wait for lock Wait for lock

5.26 Wait for lock Wait for lock

5.27 Wait for lock Wait for lock

5.28 Wait for lock Wait for lock

5.29 Wait for lock Wait for lock

5.30 Wait for lock Wait for lock

 X WX=3.40 p.m Rx= 3.20 p.m

 Now transaction Ti starts at 3.35 p.m who’s action to be performed is
Read(x). Ti wanted to read x at 3.35. at that time the value could have
been 20 (assume) so Ti actually wanted this value 20. But, Ti could not
get a chance at that time. In the meantime, another transaction Tj has
updated the value of X at 3.40 p.m . When Ti is getting the chance, it is
already 3.42 p.m .. If Ti reads the value of x, it is going to be the new
value as updated by tj and not the one ti actually wanted to read. So,
there is no point in performing this read operation now. Ti is rejected
and has to try again.

 Let us say Ti issues Write(Q)

 Case 1: if(Ts(Ti) < Rx(x) it means ti is trying to update x whereas some
other trans has already read

 the value of x. so the updation done by ti is not required. So ti is
rejected

 Case 2: if Ts(Ti) < Wx(x) then it means before Ti could update x, some
other transaction has updated

 x with a latest value. So ti is rejected

 Case 3 : else ti is executed

7/10/2011 334

 We can categorize the problem space into two parts

 Solvable Problems

 Unsolvable problems

7/10/2011 335

 Given a description of a program and a finite

input, decide whether the program finishes running

in a finite time or will run forever, given that input

 The halting problem is famous because it was

one of the first problems proved undecidable,

which means there is no computer program

capable of correctly answering the question for

all possible inputs

7/10/2011 336

 U1 U2 U3 U4

 aba bbb aab bb

 V1 v2 v3 v4

 a aaa abab babba

 A solution to this problem would be the sequence 1,
4, 3, 1 because

 u1u4u3u1 = aba + bb + aab + aba = ababbaababa = a
+ babba + abab + a = v1v4v3v1

 The problem is to find whether such a solution
exists or not

7/10/2011 337

 From not solvable we come to the concept of how

well we can solve the problems

 logn- logaritihmic time

 n- linear time

 nlogn – near linear time

 n2 – square time

 n3 cubic time

 n4 --- nk - higher polynomial or super polynomial

7/10/2011 338

 All those algorithms that can be solved in polynomial
time with worst case running time as O(nk). So these
problems are regarded as tractable.

 A problem that can be solved polynomially in one model
can also be solved polynomially in other model.

7/10/2011 339

 If the result of every operation is uniquely defined

then we call that algorithm as deterministic

algorithm.

 If we remove this notion and we say that the output

of an operation is not unique but limited to a set of

possibilities

 In theoretical computer science, a non-

deterministic Turing machine (NTM) is a Turing

machine (TM) in which state transitions are not

uniquely defined.

7/10/2011 340

 A Non deterministic algorithm for searching an

element x in a given set of elements A[1..n]

 1. j= choice(1,n)

 2. if A[j]=x then write (j); Success

 3. else write(0); Failure

7/10/2011 341

 Algorithm Nsort

 For i=1 to n do B[i]=0;

 for i=1to n do

 { j= choice(1,n);

 if b[j]<>0 then failure();

 B[j] = a[i]

 }

 for i= 1 to n-1 do

 if B[i] > B[i+1] then failure;

 success();

7/10/2011 342

 It is the set of all problems that can be solved in

polynomial time with non-deterministic concept.

 However this concept only exists in theory. There

are no implementations what so ever.

7/10/2011 343

 A decision problem is that problem which can have

only two options as its solution space i.e. yes or no.

 Whether x is a prime number is also a decision

problem that will have answer yes or no.

 For a Travelling salesperson problem the question

that whether a tour of cost < k exists is a decision

problem.

7/10/2011 344

 So for many problems it will be like guess & verify

situation.

 We will guess a particular solution and then verify

that whether this is the solution (yes) or not (no)

 If this guessing and verifying can be done in

polynomial time with the help of a non

deterministic concept then we say that the problem

is in NP

7/10/2011 345

 Satisfiability is the problem of determining if the
variables of a given Boolean formula can be
assigned in such a way as to make the formula
evaluate to TRUE. Equally important is to
determine whether no such assignments exist,
which would imply that the function expressed by
the formula is identically FALSE for all possible
variable assignments. In this latter case, we would
say that the function is unsatisfiable; otherwise it is
satisfiable. To emphasize the binary nature of this
problem, it is frequently referred to as Boolean or
propositional satisfiability.

7/10/2011 346

 if f(x1,x2,………xn) = True

 xi = 0 or 1

 we have to find x1,x2,x3…xn

 such that f(b1,b2,b3……bn)=1 where b1= 0 or 1,b2= 0 or
1…….. bn = 0 or 1

 2n different permutations, someone out of that can give
answer as 1 (true)

 guess

 ?f(1,0,1,0,0,1 …………..,1,0) = 1

 verify (evaluate the function)

 ability to guess and verify in polynomial time

7/10/2011 347

 The complexity class P is contained in NP but the

vice versa has not been proved and proving whether

p= NP remains the biggest research question.

 Cook Formulated a question that is there any single

problem in NP such that if we showed it to be in P,

then that would imply P=NP

7/10/2011 348

 Given an instance x of a problem A, use a

polynomial time reduction algorithm to transform it

to instance y of problem B.

 Run the polynomial time algorithm for B on instance

y

 use the answer for y as the answer for x.

7/10/2011 349

 This problem A can be decision problem for some

problem or a decision version for optimization

problem. It may be or may not be part of NP class

of problems. We call such problems as NP hard

problems if they can be reduced to another

problem B in polynomial time and then then that

problem B can be solved in polynomial time and

then that result of B can be used for giving solution

of A in polynomial time.

7/10/2011 350

 if Problem is NP-hard and problem belongs to NP

then it is NP-complete.

 Problems are designated "NP-complete" if their

solutions can be quickly checked for correctness,

and if the same solving algorithm used can solve all

other NP problems. They are the most difficult

problems in NP in the sense that a deterministic,

polynomial-time solution to any NP-complete

problem would provide a solution to every other

problem in NP

7/10/2011 351

 Given a graph , what is the max clique size of the

graph.

 Decision problem: Does G have a clique size < K

(yes or No)

7/10/2011 352

 In Satisfiability problem we have a specific problem

called 3 satisfiability problem. It uses conjuctive

normal form(3 CNF)

 Let us try to convert 3SAT CNF Clique Problem

 (I,P) (I’,G)

_ _ _ _

f=(x1+x2+x3) and (x1+x2+x3) and (x2+x3)

Take x1=1,x2=0 and x3=1

7/10/2011 353

 Each Column corresponds to each clause. (x,y) are not
connected if they are in the same column or if

_
x= y

G has a clique of size k iff this is satisfiable
So we are going to provide edges except inconsistent
assignments
Function f will be satisfiable iff all clauses are one and
all clauses will be one iff one of the constituents is one.
Assume any of them to be one and then take
corresponding elements in the graph, they will form a
clique because they are in different columns and do not
complement each other.

7/10/2011 354

 So we are able to correlate one problem which is NP

hard with the another problem which is also NP hard

and so we can say that if one of them can be solved in

polynomial time then another can also be solved in

polynomial time. Similarly it can be proved for all

problems in NP.

 But the problem is that we don’t have any polynomial

solution for any of the problems in NP included both

discussed. And also there is almost no hope. Only thing

we can say here is that it has not been proved that

P=NP and neither it has been proved that P<> NP so that

can give us a little hope to work on and on.

7/10/2011 355

