
  

  
 Abstract—These instructions Frequent itemsets mining is 

one of the most important and crucial part in today’s world for 
every transactional database. Many researchers have 
introduced many algorithms for mining frequent itemsets over 
the last few decades. Firstly the most known and powerful 
horizontal database layout based algorithm introduced is 
Apriori algorithm then various improvements also been 
introduced on the basis of this approach. Then the tree 
projection based algorithms are introduced for the efficient 
storage and retrieval of the datasets. Tree projection based 
algorithms include FP-Growth, H-Mine and many more. 
Various hybrid algorithms also been introduced for taking the 
advantage of vertical as well as tree projection algorithms. This 
classification aims to enhance the understanding of various 
present techniques and direction of research in this area. This 
article attempts to provide theoretical aspects of the key 
techniques. 

 
Index Terms—Data mining, Frequent itemsets, Apriori 

algorithms, FP-Tree algorithms. 
 

I. INTRODUCTION 
Association rule mining is one of the most important and 

crucial task in data mining. A database stores large number of 
records according to the transaction ids. Association rule 
mining depends upon the relations between the records and 
items which can be efficiently mined by the frequent itemset 
mining. A frequent itemset is a pattern which occurs greater 
than the minimum support in the database [1]. Like in the 
grocery retailer shop each customer purchase a number of 
items like tea, coffee, sugar and many more and another 
customer purchase may other or same items for the grocery 
shop. These items are stored in the database according to the 
transaction ids. Thus data mining used to analyze the 
behavior of customers according to their purchasing behavior, 
occurrence of items and various other patterns. like if two 
items say bread and milk purchased by many customers many 
times which is greater than the minimum support and as 
considered as frequent then according to association rules, we 
can say that if bread is purchased then milk is also purchased 
most of the cases and vice versa. In this way pattern mining 
algorithms mines the repeated patterns known as frequent 
patterns. This type of analysis may apply for disease 
treatments, natural disasters, web access patterns and many 
more by just collecting the historical data. In this way 
association rule mining merely depends upon the frequent 
itemset mining than make association rule according to 
frequent patterns. 

Many algorithms have been proposed from many decades, 
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like horizontal layout based algorithms [1, 2, 4, 7, 10], 
vertical layout based algorithms [9] and projected layout 
based algorithms [5, 8]. In this article, will discuss important 
classical layout based algorithms and keep our article clean 
and focused by excluding closed, minimal, maximal or 
incremental algorithms. This article provides a deep 
discussion of features of algorithms from each layout based 
category along with strengths and weakness. This article tries 
to explain the following: 

Approaches: The various approaches categorized into 
vertical layout based algorithms like Apriori and all its 
variations, horizontal layout based algorithms like éclat and 
projected based layout based algorithms like FP-Tree 
algorithm, H-Mine algorithm and others. 

Issues: The various scalability and handling issues 
attached with various techniques, the functionality of specific 
techniques corresponding to specific dataset. The time and 
space constraints attached to specific approach. 

The further organization of this paper is as follows. In 
Section 2, we briefly define the problem statement for finding 
the frequent itemsets from transactional database. Sections 3 
define the literature survey of existing techniques based upon 
the horizontal layout based database, vertical layout based 
database and projected layout based database.. Section 4 
defines the analysis and discussing of these algorithms. 
Section 5 compares the existing techniques. Section 6 
concludes the paper. 

 

II. PROBLEM STATEMENT 
The problem of mining association rules over market 

basket analysis was introduced in [2] .i.e. finding associations 
between the items that are present in the transaction from the 
database. The database may be from any retail shop, medical 
or from any other applications [11]. As defined in [3] the 
problem is stated as follows: Let I ൌ iଵ, iଶ, … . . i୫ be a set of 
literals, called items and m is considered the dimensionality 
of the problem. Let D be a set of transactions, where each 
transaction T is a set of items such that T א  I. A unique 
identifier TID is given to each transaction. A transaction T is 
said to containX, a set of items in I. X א T An association rule 
is an implication of the form “Xെ՜ Y ”, where א I, Y א I 
and X ת Y ൌ  An itemset X is said to be large or frequent if .׎ 
its support s is greater or equal than a given minimum support 
threshold σ. An itemset X satisfies a constraint C if and only 
if CሺXሻ  is true. The rule Xെ՜ Y  has a support s in the 
transaction set D  if s% of the transactions in D contain X ׫
Y . In other words, the support of the rule is the probability 
that X and Y hold together among all the possible presented 
cases. It is said that the rule Xെ՜ Y holds in the transaction 
set D  with confidence c  if c%  of transactions in D  that 
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contain  X also contain  Y . In other words, the confidence of 
the rule is the conditional probability that the consequent Y is 
true under the condition of the antecedentX. The problem of 
discovering all association rules from a set of transactions D 
consists of generating the rules that have a support and 
confidence greater than a given threshold. These rules are 
called Strong Rules. This association-mining task can be 
broken into two steps: 

• Finding the frequent k-itemset from the large database. 
• Generate the association rule from these frequent item 

sets. 
In this paper, we focus exclusively on the first step: 

generating frequent itemsets algorithms. 
 

III. LITERATURE RIVIEW 

A. Algorithms for Mining from Horizontal Layout 
Database 
In this type of database, each row of database represents a 

transaction which has a transaction identifier (TID), followed 
by a set of items. One example of horizontal layout dataset is 
shown in diagram: 

 
TABLE I: HORIZONTAL LAYOUT BASED DATABASE 
TID ITEMS 
T1 I1, I2, I3, I4, I5, I6 
T2 I1, I2, I4, I7 
T3 I1, I2, I4, I5, I6 
T4 I1, I2, I3 
T5 I3, I5 

 

1) Apriori Algorithm 
Apriori algorithm [3] is one of the most important 

algorithms which set the breed of all frequent mining 
algorithms. The working of Apriori algorithm is fairly 
depends upon the Apriori property which states that” All 
nonempty subsets of a frequent itemsets must be frequent” 
[3]. It also described the anti monotonic property which says 
if the system cannot pass the minimum support test, all its 
supersets will fail to pass the test [3]. Therefore if the one set 
is infrequent then all its supersets are also frequent and vice 
versa. This property is used to prune the infrequent candidate 
elements. Apriori employs a bottom up Breadth, First 
approach and also an iterative approach to mine the frequent 
elements, where k-itemsets are used to explore 
(k+1)-itemsets. The feature first invented by [2] in Apriori 
algorithm is used by the many algorithms for frequent pattern 
generation. The basic steps to mine the frequent elements are 
as follows: 

• Generate and test: In this first find the 1-itemset frequent 
elements Lଵ by scanning the database and removing all those 
elements from Cଵ which cannot satisfy the minimum support 
criteria. 

• Join step: To attain the next level elements C୩ join the 
previous frequent elements by self join i.e. L୩ିଵ כ  L୩ିଵ 
known as Cartesian product of L୩ିଵ. 

• Prune step: C୩ is the superset of L୩ so members of C୩ 
may or may not be frequent but all K െ 1 frequent itemsets 
are included in C୩  thus prunes the C୩  to fnd K  frequent 
itemsets with the help of Apriori property. The set of frequent 

elements known as L୩. Step 2 and 3 is repeated until no new 
candidate set is generated. 

To illustrate this, suppose n frequent 1-itemsets and 
minimum support is 1 then according to Apriori based 
algorithm will generate nଶ ൅ ሺn 2ሻcandidate 2 െ
itemset ሺn 3ሻcandidate 3 െ itemset and so on [11]. The 
total number of candidates generated is greater than 
∑ ሺn kሻ୬

୩ୀଵ Therefore suppose there are 1000 elements then 
1499500 candidate are produced in 2 itemset frequent and 
166167000 are produced in 3-itemset frequent [11]. The 
Apriori property can be illustrate as follows: Given the set of 
frequent 2-itemsets {I1, I2}; {I1, I3}; {I1 I4}; {I3, I4}, by 
joining 2-itemsets, the set of potential candidates of size 3, 
{I1, I2, I3}; {I1, I3, I4} can be generated. Because that the 
subset {I2, I3} of {I1, I2, I3} is not frequent, {I1, I2, I3} 
surely cannot be frequent and is pruned from the set of 
candidates. In this way, Apriori algorithm avoids wasting 
computation in counting the itemsets that must not be 
frequent by judging from their subsets. 

It is no doubt that Apriori algorithms successfully find the 
frequent elements from the database. But as the 
dimensionality of the database increase with the number of 
items then: 

• More search space is needed and I/O cost will increase. 
• Number of database scan is increased thus candidate 

generation will increase results in increase in computational 
cost. 

Therefore many variations have been takes place in the 
Apriori algorithm to minimize the above limitations arises 
due to increase in size of database. These subsequently 
proposed algorithms adopt similar database scan level by 
level as in Apriori algorithm, while the methods of candidate 
generation and pruning, support counting and candidate 
representation may differ. The algorithms improve the 
Apriori algorithms by: 

• Reduce passes of transaction database scans 
• Shrink number of candidates 
• Facilitate support counting of candidates 

These algorithms are as follows: 

2) Direct hashing and pruning (DHP):  
It is absorbed that reducing the candidate items from the 

database is one of the important task for increasing the 
efficiency. Thus a DHP technique was proposed [7] to reduce 
the number of candidates in the early passes C୩ for k ൐ 1 and 
thus the size of database. In this method, support is counted 
by mapping the items from the candidate list into the buckets 
which is divided according to support known as Hash table 
structure. As the new itemset is encountered if item exist 
earlier then increase the bucket count else insert into new 
bucket. Thus in the end the bucket whose support count is 
less the minimum support is removed from the candidate set. 
In this way it reduce the generation of candidate sets in the 
earlier stages but as the level increase the size of bucket also 
increase thus difficult to manage hash table as well candidate 
set. 

3) Partitioning algorithm: 
Partitioning algorithm [1] is based to find the frequent 

elements on the basis partitioning of database in n parts. It 
overcomes the memory problem for large database which do 
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not fit into main memory because small parts of database 
easily fit into main memory. This algorithm divides into two 
passes,  
1. In the first pass whole database is divided into n number 

of parts. 
2. Each partitioned database is loaded into main memory 

one by one and local frequent elements are found. 
3. Combine the all locally frequent elements and make it 

globally candidate set. 
4. Find the globally frequent elements from this candidate 

set. 
It should be noted that if the minimum support for 

transactions in whole database is min_sup then the minimum 
support for partitioned transactions is min-sup number of 
transaction in that partition. 

A local frequent itemset may or may not be frequent with 
respect to the entire database thus any itemset which is 
potentially frequent must include in any one of the frequent 
partition. 

 

 
Fig. 1. Mining by partitioning the data [13] 

 
As this algorithm able to reduce the database scan for 

generating frequent itemsets but in some cases, the time 
needed to compute the frequency of candidate generates in 
each partitions is greater than the database scan thus results in 
increased computational cost. 

4) Sampling algorithm: 
This algorithm [10] is used to overcome the limitation of 

I/O overhead by not considering the whole database for 
checking the frequency. It is just based in the idea to pick a 
random sample of itemset R from the database instead of 
whole database D. The sample is picked in such a way that 
whole sample is accommodated in the main memory. In this 
way we try to find the frequent elements for the sample only 
and there is chance to miss the global frequent elements in 
that sample therefore lower threshold support is used instead 
of actual minimum support to find the frequent elements local 
to sample. In the best case only one pass is needed to find all 
frequent elements if all the elements included in sample and 
if elements missed in sample then second pass are needed to 
find the itemsets missed in first pass or in sample [13]. 

Thus this approach is beneficial if efficiency is more 
important than the accuracy because this approach gives the 
result in very less scan or time and overcome the limitation of 
memory consumption arises due to generation of large 
amount of datasets but results are not as much accurate. 

5) Dynamic Itemset Counting (DIC): 
This algorithm [4] also used to reduce the number of 

database scan. It is based upon the downward disclosure 
property in which adds the candidate itemsets at different 
point of time during the scan. In this dynamic blocks are 

formed from the database marked by start points and unlike 
the previous techniques of Apriori it dynamically changes the 
sets of candidates during the database scan. Unlike the 
Apriori it cannot start the next level scan at the end of first 
level scan, it start the scan by starting label attached to each 
dynamic partition of candidate sets. 

In this way it reduce the database scan  for finding the 
frequent itemsets by just adding the new candidate at any 
point of time during the run time. But it generates the large 
number of candidates and computing their frequencies are the 
bottleneck of performance while the database scans only take 
a small part of runtime. 

Assumption [12, 13]: The performance of all the above 
algorithms relies on an implicit assumption that the database 
is homogenous and thus they will not generate too many extra 
candidates than Apriori algorithm does. For example, if all 
partitions in Partition algorithm are not homogenous and 
nearly completely different sets of local frequent itemsets are 
generated from them, the performance cannot be good. 

 

B. Algorithms for Mining from Vertical Layout Database 
In vertical layout data set, each column corresponds to an 

item, followed by a TID list, which is the list of rows that the 
item appears. An example of vertical layout database set is as 
shown in diagram for the table1. 

 
TABLE II: VERTICAL LAYOUT BASED DATABASE 

ITEM TID_list 
I1 T1, T2, T3, T4 
I2 T1, T2, T3, T4 
I3 T1, T4, T5 
I4 T1, T2, T3 
I5 T1, T3, T5 
I6 T1, T3 
I7 T2 

 

1) Eclat algorithm 
It is a set intersection, depth first search algorithm [9], 

unlike the Apriori. It uses vertical layout database and each 
item use intersection based approach for finding the support. 
In this way, the support of an itemset P  can be easily 
computed by simply intersecting of any two subsets Q, R ك
 P, such that P ൌ  Q U R. 

In this type of algorithm, for each frequent itemset i new 
database is created Di. This can be done by finding j which is 
frequent corresponding to i together as a set then j is also 
added to the created database i.e. each frequent item is added 
to the output set. It uses the join step like the Apriori only for 
generating the candidate sets but as the items are arranged in 
ascending order of their support thus less amount of 
intersection is needed between the sets. It generates the larger 
amount of candidates then Apriori because it uses only two 
sets at a time for intersection [9]. There is reordering step 
takes place at each recursion point for reducing the candidate 
itemsets. 

In this way by using this algorithm there is no need to find 
the support of itemsets whose count is greater than 1because 
Tid-set for each item carry the complete information for the 
corresponding support. When the database is very large and 
the itemsets in the database corresponding also very large 
then it is feasible to handle the Tid list thus it produce good 
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results but for small databases its performance is not up to 
mark. 

C. Algorithms for mining from projected layout based 
database 

The concept of projected database was proposed and 
applied to mine the frequent itemsets efficiently because 
early approaches are able to mine the frequent itemsets but 
use large amount of memory. This type of database uses 
divide and conquer strategy to mine itemsets therefore it 
counts the support more efficiently then Apriori based 
algorithms. Tree projected layout based approaches use tree 
structure to store and mines the itemsets. The projected based 
layout contains the record id separated by column then 
record. 

Tree projection is defined as the lexicographic tree with 
nodes contains the frequent itemsets [14]. The lexicographic 
trees usually follow the ascending order for saving the 
frequent itemsets according to the support for better mining 
[5]. 

Tree Projection algorithms based upon two kinds of 
ordering breadth-first and depth-first. For breath-first order, 
nodes are constructed level by level in the lexicographic tree 
for frequent itemsets [11]. In order to compute frequencies of 
nodes (corresponding frequent itemsets) at k level, tree 
projection algorithm maintained matrices at nodes of the k-2 
level and one database scan was required for counting 
support [5]. Every transaction is projected by node 
sequentially. The projected set of transaction for reduced set 
is used to evaluate frequency. 

For depth-first order, database is projected along the 
lexicographic tree and also requires fitting into main memory 
[13]. The advantage is that the projected database will 
become smaller along the branch of the lexicographic tree 
while the breadth-first needs to project the database from the 
scratch at each level. 

The disadvantage of depth-first is obvious that it needs to 
load database and projected databases in memory. The 
breadth-first method will also meet the memory bottleneck 
when the number of frequent items is large and the matrix is 
too large to fit in memory [5]. 

1) FP-Growth Algorithm 
FP-tree [6] is based upon recursively divide and conquers 

strategy for mining the frequent itemsets from the database. 
FP-tree needs 2 database scan for finding he frequent item set 
completely. Unlike the Apriori algorithm it mines the 
frequent itemsets without generation of candidate itemsets. It 
compresses the whole database in to compressed form as in 
the structure known as FP-tree and the process is known as 
FP-Growth. Due to its non generation of candidate itemsets, 
improves the multi database scan problem. 

The construction of frequent patterns is based upon the 
construction of Conditional pattern base and the conditional 
FP-tree. Its first scan is same as the Apriori algorithm i.e. it 
scan the database and count the frequency of each item then 
select the 1-itemset frequent. Then all the items are stored in 
the list according to the descending order of the frequency 
known as F-list. After the F-list is created create the tree for a 
every transaction according to the items in the F-list i.e. in the 
descending order of the frequency. A pointer is maintained 
for each item from the F-list (header table). For every new 

item new node is created and if same item is encounter at 
same place then increment the support value attached with 
each node separated by column by 1. 

Conditional pattern base is created which is the sub 
database consists of set of prefix path in the FP-tree 
co-occurring with the suffix pattern [6]. After conditional 
pattern base conditional FP-tree is constructed for each 
pattern base and mines the tree recursively for frequent 
itemsets. 

Due to its divide and conquer strategy it transforms the 
problem of finding long frequent patterns to search for 
shorter ones recursively [12]. But for the large database it 
becomes unrealistic to construct the whole FP-tree in the 
main memory as due to limited size of memory. 

2) H-mine Algorithm 
H-mine [8] algorithm is the improvement over FP-tree 

algorithm as in H-mine projected database is created using 
in-memory pointers. H-mine uses an H-struct new data 
structure for mining purpose known as hyperlinked structure. 
It is used upon the dynamic adjustment of pointers which 
helps to maintain the processed projected tree in main 
memory therefore H-mine proposed for frequent pattern data 
mining for data sets that can fit into main memory. It has 
polynomial space complexity therefore more space efficient 
then FP-growth and also designed for fast mining purpose. 
For the large databases, first in partition the database then 
mine each partition in main memory using H-struct then 
consolidating global frequent pattern [8]. If the database is 
dense then it integrates with FP-Growth dynamically by 
detecting the swapping condition and constructing the 
FP-tree. 

This working ensures that it is scalable for both large and 
medium size databases and for both sparse and dense datasets 
[14]. The advantage of using in-memory pointers is that their 
projected database does not need any memory the memory 
required only for the set of in-memory pointers. 

 

IV. ANALYSIS AND DISCUSSION 
• All the algorithms produce frequent itemsets on the 

basis of minimum support. 
• Apriori algorithm is quite successful for market based 

analysis in which transaction may large but frequent items 
generated is small in number. 

• The Apriori variations (DHP, DIC, Partition, and 
Sample) algorithms among them DHP tries to reduce 
candidate itemsets and others try to reduce database scan. 

• DHP works well at early stages and performance 
deteriorates in later stages and also results in I/O overhead. 

• For DIC, Partition, sample algorithm performs worse 
where database scan required is less then generating 
candidates. 

• Vertical Layout based algorithms claims to be faster 
than Apriori but require larger memory space then horizontal 
layout based because they needs to load candidate, database 
and TID list in main memory. 

• For projected layout based algorithms, performs better 
then all discussed above because of no generation of 
candidate sets but the pointes needed to store in memory 
require large memory space. 
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V. COMPARISION OF ALGORITHMS 
TABLE III: COMPARISONS OF ALL TECHNIQUE 

 Horizontal layout based algorithms Vertical layout 
based algorithm

Projected layout based 
algorithms 

Algorithm 
 

Parameter 
Apripri 

Algorithm 
DHP 

algorithm 
Partition 

Algorithm DIC algorithm Sample 
Algorithm Eclat algorithm FP-tree 

Algorithm 
H-mine 

Algorithm 
Storage Structure Array based Array Based Array based Array based Array based Array based Tree based Tree based 

Technique 

Use Apriori 
property and 
join and prune 
method 

Use hashing 
technique for 
finding 
frequent 
itemsets 

Partition the 
database for 
finding local 
frequent item 
first 

Based upon 
dynamic 
insertion of 
candidate 
items. 

Pick any 
random sample 
for checking 
frequency of 
whole database 
at lower 
threshold 
support 

Use intersection 
of Transaction 
ids list for 
generating 
candidate 
itemsets. 

It constructs 
conditional 
frequent pattern 
tree and condi- 
tional pattern 
base from 
database which 
satisfy the mini- 
mum support. 

It uses the 
hyperlink 
pointers to 
store the 
partitioned 
projected 
database in 
main memory.

Memory 
utilization 

Due to large 
amount of 
candidate are 
produced so 
require large 
memory space 

Require less 
space at earlier 
passes but 
more in later 
stages 

Each partition 
is easily 
occupy in main 
memory 

Require 
different 
amount of 
memory at 
different point 
of time 

Very less 
amount of 
memory is 
needed 

Require less 
amount of 
memory compare 
to Apriori if 
itemsets are small
in number 

Due to compact 
structure and no 
candidates 
generation 
require less 
memory 

Memory is 
utilized accord- 
ing to needs and 
partitions of 
projected 
database 

Databases 

Suitable for 
sparse 
datasets as 
well as dense 
datasets 

Suitable for 
medium 
databases 

Suitable for 
large databases

Suitable for 
medium and 
low databases

Suitable for 
any kind of 
dataset but 
mostly not give 
accurate 
results 

Suitable for 
medium and 
dense datasets 
but not suitable 
for small 
datasets. 

Suitable for 
large and 
medium 
datasets 

Suitable for 
sparse and 
dense datasets.

Time 

Execution 
time is more 
as time 
wasted in 
producing 
candidates at 
every time 

Execution 
time is small 
for small 
databases. 

Execution time 
is more 
because of 
finding locally 
frequent then 
globally 
frequent 

Execution 
time is small 
because 
dynamic 
itemset are 
added 
according to 
situation. 

Execution time 
is very much 
small. 

Execution time 
is small then 
Apriori 
algorithm 

Execution time 
is large due to 
complex 
compact data 
structure 

Execution time 
is large then 
FP-tree and 
others because 
of partition the 
database. 

 

VI. CONCLUSION 
The main objective of this research survey was to analyze 

the assessment of mining association rules using frequent 
item sets. It was discussed various algorithms like Apriori 
algorithm, partition algorithm, DHP algorithm, DIC 
algorithm (applicable on Horizontal layout database), Eclat 
algorithm (applicable in Vertical layout data base) and 
FP-tree algorithm, H-mine algorithm (based on tree 
projection). This analysis made a significant to the search of 
improving the efficiency if frequent itemsets. Various 
classical algorithms strengths and weakness were discussed 
and found some algorithms produce candidates sets and some 
not, various algorithms are the improved version of the 
classical algorithms. In the future also by using above 
discussed strengths, weakness, properties of various 
algorithms can helps to improve the other hybrid or any other 
frequent mining algorithms.  
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