

 Abstract—These instructions Frequent itemsets mining is

one of the most important and crucial part in today’s world for
every transactional database. Many researchers have
introduced many algorithms for mining frequent itemsets over
the last few decades. Firstly the most known and powerful
horizontal database layout based algorithm introduced is
Apriori algorithm then various improvements also been
introduced on the basis of this approach. Then the tree
projection based algorithms are introduced for the efficient
storage and retrieval of the datasets. Tree projection based
algorithms include FP-Growth, H-Mine and many more.
Various hybrid algorithms also been introduced for taking the
advantage of vertical as well as tree projection algorithms. This
classification aims to enhance the understanding of various
present techniques and direction of research in this area. This
article attempts to provide theoretical aspects of the key
techniques.

Index Terms—Data mining, Frequent itemsets, Apriori

algorithms, FP-Tree algorithms.

I. INTRODUCTION
Association rule mining is one of the most important and

crucial task in data mining. A database stores large number of
records according to the transaction ids. Association rule
mining depends upon the relations between the records and
items which can be efficiently mined by the frequent itemset
mining. A frequent itemset is a pattern which occurs greater
than the minimum support in the database [1]. Like in the
grocery retailer shop each customer purchase a number of
items like tea, coffee, sugar and many more and another
customer purchase may other or same items for the grocery
shop. These items are stored in the database according to the
transaction ids. Thus data mining used to analyze the
behavior of customers according to their purchasing behavior,
occurrence of items and various other patterns. like if two
items say bread and milk purchased by many customers many
times which is greater than the minimum support and as
considered as frequent then according to association rules, we
can say that if bread is purchased then milk is also purchased
most of the cases and vice versa. In this way pattern mining
algorithms mines the repeated patterns known as frequent
patterns. This type of analysis may apply for disease
treatments, natural disasters, web access patterns and many
more by just collecting the historical data. In this way
association rule mining merely depends upon the frequent
itemset mining than make association rule according to
frequent patterns.

Many algorithms have been proposed from many decades,

Manuscript received May 22, 2011; revised July 18, 2011.
The authors are with Computer Science Department, Thapar University,

Punjab, India. (e-mail:bharatgupta35@gmail.com)

like horizontal layout based algorithms [1, 2, 4, 7, 10],
vertical layout based algorithms [9] and projected layout
based algorithms [5, 8]. In this article, will discuss important
classical layout based algorithms and keep our article clean
and focused by excluding closed, minimal, maximal or
incremental algorithms. This article provides a deep
discussion of features of algorithms from each layout based
category along with strengths and weakness. This article tries
to explain the following:

Approaches: The various approaches categorized into
vertical layout based algorithms like Apriori and all its
variations, horizontal layout based algorithms like éclat and
projected based layout based algorithms like FP-Tree
algorithm, H-Mine algorithm and others.

Issues: The various scalability and handling issues
attached with various techniques, the functionality of specific
techniques corresponding to specific dataset. The time and
space constraints attached to specific approach.

The further organization of this paper is as follows. In
Section 2, we briefly define the problem statement for finding
the frequent itemsets from transactional database. Sections 3
define the literature survey of existing techniques based upon
the horizontal layout based database, vertical layout based
database and projected layout based database.. Section 4
defines the analysis and discussing of these algorithms.
Section 5 compares the existing techniques. Section 6
concludes the paper.

II. PROBLEM STATEMENT
The problem of mining association rules over market

basket analysis was introduced in [2] .i.e. finding associations
between the items that are present in the transaction from the
database. The database may be from any retail shop, medical
or from any other applications [11]. As defined in [3] the
problem is stated as follows: Let I ൌ iଵ, iଶ, … . . i୫ be a set of
literals, called items and m is considered the dimensionality
of the problem. Let D be a set of transactions, where each
transaction T is a set of items such that T א I. A unique
identifier TID is given to each transaction. A transaction T is
said to containX, a set of items in I. X א T An association rule
is an implication of the form “Xെ՜ Y ”, where א I, Y א I
and X ת Y ൌ An itemset X is said to be large or frequent if .׎
its support s is greater or equal than a given minimum support
threshold σ. An itemset X satisfies a constraint C if and only
if CሺXሻ is true. The rule Xെ՜ Y has a support s in the
transaction set D if s% of the transactions in D contain X ׫
Y . In other words, the support of the rule is the probability
that X and Y hold together among all the possible presented
cases. It is said that the rule Xെ՜ Y holds in the transaction
set D with confidence c if c% of transactions in D that

A Taxonomy of Classical Frequent Item set Mining
Algorithms

Bharat Gupta and Deepak Garg

International Journal of Computer and Electrical Engineering, Vol. 3, No. 5, October 2011

695

contain X also contain Y . In other words, the confidence of
the rule is the conditional probability that the consequent Y is
true under the condition of the antecedentX. The problem of
discovering all association rules from a set of transactions D
consists of generating the rules that have a support and
confidence greater than a given threshold. These rules are
called Strong Rules. This association-mining task can be
broken into two steps:

• Finding the frequent k-itemset from the large database.
• Generate the association rule from these frequent item

sets.
In this paper, we focus exclusively on the first step:

generating frequent itemsets algorithms.

III. LITERATURE RIVIEW

A. Algorithms for Mining from Horizontal Layout
Database
In this type of database, each row of database represents a

transaction which has a transaction identifier (TID), followed
by a set of items. One example of horizontal layout dataset is
shown in diagram:

TABLE I: HORIZONTAL LAYOUT BASED DATABASE
TID ITEMS
T1 I1, I2, I3, I4, I5, I6
T2 I1, I2, I4, I7
T3 I1, I2, I4, I5, I6
T4 I1, I2, I3
T5 I3, I5

1) Apriori Algorithm
Apriori algorithm [3] is one of the most important

algorithms which set the breed of all frequent mining
algorithms. The working of Apriori algorithm is fairly
depends upon the Apriori property which states that” All
nonempty subsets of a frequent itemsets must be frequent”
[3]. It also described the anti monotonic property which says
if the system cannot pass the minimum support test, all its
supersets will fail to pass the test [3]. Therefore if the one set
is infrequent then all its supersets are also frequent and vice
versa. This property is used to prune the infrequent candidate
elements. Apriori employs a bottom up Breadth, First
approach and also an iterative approach to mine the frequent
elements, where k-itemsets are used to explore
(k+1)-itemsets. The feature first invented by [2] in Apriori
algorithm is used by the many algorithms for frequent pattern
generation. The basic steps to mine the frequent elements are
as follows:

• Generate and test: In this first find the 1-itemset frequent
elements Lଵ by scanning the database and removing all those
elements from Cଵ which cannot satisfy the minimum support
criteria.

• Join step: To attain the next level elements C୩ join the
previous frequent elements by self join i.e. L୩ିଵ כ L୩ିଵ
known as Cartesian product of L୩ିଵ.

• Prune step: C୩ is the superset of L୩ so members of C୩
may or may not be frequent but all K െ 1 frequent itemsets
are included in C୩ thus prunes the C୩ to fnd K frequent
itemsets with the help of Apriori property. The set of frequent

elements known as L୩. Step 2 and 3 is repeated until no new
candidate set is generated.

To illustrate this, suppose n frequent 1-itemsets and
minimum support is 1 then according to Apriori based
algorithm will generate nଶ ൅ ሺn 2ሻcandidate 2 െ
itemset ሺn 3ሻcandidate 3 െ itemset and so on [11]. The
total number of candidates generated is greater than
∑ ሺn kሻ୬

୩ୀଵ Therefore suppose there are 1000 elements then
1499500 candidate are produced in 2 itemset frequent and
166167000 are produced in 3-itemset frequent [11]. The
Apriori property can be illustrate as follows: Given the set of
frequent 2-itemsets {I1, I2}; {I1, I3}; {I1 I4}; {I3, I4}, by
joining 2-itemsets, the set of potential candidates of size 3,
{I1, I2, I3}; {I1, I3, I4} can be generated. Because that the
subset {I2, I3} of {I1, I2, I3} is not frequent, {I1, I2, I3}
surely cannot be frequent and is pruned from the set of
candidates. In this way, Apriori algorithm avoids wasting
computation in counting the itemsets that must not be
frequent by judging from their subsets.

It is no doubt that Apriori algorithms successfully find the
frequent elements from the database. But as the
dimensionality of the database increase with the number of
items then:

• More search space is needed and I/O cost will increase.
• Number of database scan is increased thus candidate

generation will increase results in increase in computational
cost.

Therefore many variations have been takes place in the
Apriori algorithm to minimize the above limitations arises
due to increase in size of database. These subsequently
proposed algorithms adopt similar database scan level by
level as in Apriori algorithm, while the methods of candidate
generation and pruning, support counting and candidate
representation may differ. The algorithms improve the
Apriori algorithms by:

• Reduce passes of transaction database scans
• Shrink number of candidates
• Facilitate support counting of candidates

These algorithms are as follows:

2) Direct hashing and pruning (DHP):
It is absorbed that reducing the candidate items from the

database is one of the important task for increasing the
efficiency. Thus a DHP technique was proposed [7] to reduce
the number of candidates in the early passes C୩ for k ൐ 1 and
thus the size of database. In this method, support is counted
by mapping the items from the candidate list into the buckets
which is divided according to support known as Hash table
structure. As the new itemset is encountered if item exist
earlier then increase the bucket count else insert into new
bucket. Thus in the end the bucket whose support count is
less the minimum support is removed from the candidate set.
In this way it reduce the generation of candidate sets in the
earlier stages but as the level increase the size of bucket also
increase thus difficult to manage hash table as well candidate
set.

3) Partitioning algorithm:
Partitioning algorithm [1] is based to find the frequent

elements on the basis partitioning of database in n parts. It
overcomes the memory problem for large database which do

International Journal of Computer and Electrical Engineering, Vol. 3, No. 5, October 2011

696

not fit into main memory because small parts of database
easily fit into main memory. This algorithm divides into two
passes,
1. In the first pass whole database is divided into n number

of parts.
2. Each partitioned database is loaded into main memory

one by one and local frequent elements are found.
3. Combine the all locally frequent elements and make it

globally candidate set.
4. Find the globally frequent elements from this candidate

set.
It should be noted that if the minimum support for

transactions in whole database is min_sup then the minimum
support for partitioned transactions is min-sup number of
transaction in that partition.

A local frequent itemset may or may not be frequent with
respect to the entire database thus any itemset which is
potentially frequent must include in any one of the frequent
partition.

Fig. 1. Mining by partitioning the data [13]

As this algorithm able to reduce the database scan for

generating frequent itemsets but in some cases, the time
needed to compute the frequency of candidate generates in
each partitions is greater than the database scan thus results in
increased computational cost.

4) Sampling algorithm:
This algorithm [10] is used to overcome the limitation of

I/O overhead by not considering the whole database for
checking the frequency. It is just based in the idea to pick a
random sample of itemset R from the database instead of
whole database D. The sample is picked in such a way that
whole sample is accommodated in the main memory. In this
way we try to find the frequent elements for the sample only
and there is chance to miss the global frequent elements in
that sample therefore lower threshold support is used instead
of actual minimum support to find the frequent elements local
to sample. In the best case only one pass is needed to find all
frequent elements if all the elements included in sample and
if elements missed in sample then second pass are needed to
find the itemsets missed in first pass or in sample [13].

Thus this approach is beneficial if efficiency is more
important than the accuracy because this approach gives the
result in very less scan or time and overcome the limitation of
memory consumption arises due to generation of large
amount of datasets but results are not as much accurate.

5) Dynamic Itemset Counting (DIC):
This algorithm [4] also used to reduce the number of

database scan. It is based upon the downward disclosure
property in which adds the candidate itemsets at different
point of time during the scan. In this dynamic blocks are

formed from the database marked by start points and unlike
the previous techniques of Apriori it dynamically changes the
sets of candidates during the database scan. Unlike the
Apriori it cannot start the next level scan at the end of first
level scan, it start the scan by starting label attached to each
dynamic partition of candidate sets.

In this way it reduce the database scan for finding the
frequent itemsets by just adding the new candidate at any
point of time during the run time. But it generates the large
number of candidates and computing their frequencies are the
bottleneck of performance while the database scans only take
a small part of runtime.

Assumption [12, 13]: The performance of all the above
algorithms relies on an implicit assumption that the database
is homogenous and thus they will not generate too many extra
candidates than Apriori algorithm does. For example, if all
partitions in Partition algorithm are not homogenous and
nearly completely different sets of local frequent itemsets are
generated from them, the performance cannot be good.

B. Algorithms for Mining from Vertical Layout Database
In vertical layout data set, each column corresponds to an

item, followed by a TID list, which is the list of rows that the
item appears. An example of vertical layout database set is as
shown in diagram for the table1.

TABLE II: VERTICAL LAYOUT BASED DATABASE

ITEM TID_list
I1 T1, T2, T3, T4
I2 T1, T2, T3, T4
I3 T1, T4, T5
I4 T1, T2, T3
I5 T1, T3, T5
I6 T1, T3
I7 T2

1) Eclat algorithm
It is a set intersection, depth first search algorithm [9],

unlike the Apriori. It uses vertical layout database and each
item use intersection based approach for finding the support.
In this way, the support of an itemset P can be easily
computed by simply intersecting of any two subsets Q, R ك
 P, such that P ൌ Q U R.

In this type of algorithm, for each frequent itemset i new
database is created Di. This can be done by finding j which is
frequent corresponding to i together as a set then j is also
added to the created database i.e. each frequent item is added
to the output set. It uses the join step like the Apriori only for
generating the candidate sets but as the items are arranged in
ascending order of their support thus less amount of
intersection is needed between the sets. It generates the larger
amount of candidates then Apriori because it uses only two
sets at a time for intersection [9]. There is reordering step
takes place at each recursion point for reducing the candidate
itemsets.

In this way by using this algorithm there is no need to find
the support of itemsets whose count is greater than 1because
Tid-set for each item carry the complete information for the
corresponding support. When the database is very large and
the itemsets in the database corresponding also very large
then it is feasible to handle the Tid list thus it produce good

International Journal of Computer and Electrical Engineering, Vol. 3, No. 5, October 2011

697

results but for small databases its performance is not up to
mark.

C. Algorithms for mining from projected layout based
database

The concept of projected database was proposed and
applied to mine the frequent itemsets efficiently because
early approaches are able to mine the frequent itemsets but
use large amount of memory. This type of database uses
divide and conquer strategy to mine itemsets therefore it
counts the support more efficiently then Apriori based
algorithms. Tree projected layout based approaches use tree
structure to store and mines the itemsets. The projected based
layout contains the record id separated by column then
record.

Tree projection is defined as the lexicographic tree with
nodes contains the frequent itemsets [14]. The lexicographic
trees usually follow the ascending order for saving the
frequent itemsets according to the support for better mining
[5].

Tree Projection algorithms based upon two kinds of
ordering breadth-first and depth-first. For breath-first order,
nodes are constructed level by level in the lexicographic tree
for frequent itemsets [11]. In order to compute frequencies of
nodes (corresponding frequent itemsets) at k level, tree
projection algorithm maintained matrices at nodes of the k-2
level and one database scan was required for counting
support [5]. Every transaction is projected by node
sequentially. The projected set of transaction for reduced set
is used to evaluate frequency.

For depth-first order, database is projected along the
lexicographic tree and also requires fitting into main memory
[13]. The advantage is that the projected database will
become smaller along the branch of the lexicographic tree
while the breadth-first needs to project the database from the
scratch at each level.

The disadvantage of depth-first is obvious that it needs to
load database and projected databases in memory. The
breadth-first method will also meet the memory bottleneck
when the number of frequent items is large and the matrix is
too large to fit in memory [5].

1) FP-Growth Algorithm
FP-tree [6] is based upon recursively divide and conquers

strategy for mining the frequent itemsets from the database.
FP-tree needs 2 database scan for finding he frequent item set
completely. Unlike the Apriori algorithm it mines the
frequent itemsets without generation of candidate itemsets. It
compresses the whole database in to compressed form as in
the structure known as FP-tree and the process is known as
FP-Growth. Due to its non generation of candidate itemsets,
improves the multi database scan problem.

The construction of frequent patterns is based upon the
construction of Conditional pattern base and the conditional
FP-tree. Its first scan is same as the Apriori algorithm i.e. it
scan the database and count the frequency of each item then
select the 1-itemset frequent. Then all the items are stored in
the list according to the descending order of the frequency
known as F-list. After the F-list is created create the tree for a
every transaction according to the items in the F-list i.e. in the
descending order of the frequency. A pointer is maintained
for each item from the F-list (header table). For every new

item new node is created and if same item is encounter at
same place then increment the support value attached with
each node separated by column by 1.

Conditional pattern base is created which is the sub
database consists of set of prefix path in the FP-tree
co-occurring with the suffix pattern [6]. After conditional
pattern base conditional FP-tree is constructed for each
pattern base and mines the tree recursively for frequent
itemsets.

Due to its divide and conquer strategy it transforms the
problem of finding long frequent patterns to search for
shorter ones recursively [12]. But for the large database it
becomes unrealistic to construct the whole FP-tree in the
main memory as due to limited size of memory.

2) H-mine Algorithm
H-mine [8] algorithm is the improvement over FP-tree

algorithm as in H-mine projected database is created using
in-memory pointers. H-mine uses an H-struct new data
structure for mining purpose known as hyperlinked structure.
It is used upon the dynamic adjustment of pointers which
helps to maintain the processed projected tree in main
memory therefore H-mine proposed for frequent pattern data
mining for data sets that can fit into main memory. It has
polynomial space complexity therefore more space efficient
then FP-growth and also designed for fast mining purpose.
For the large databases, first in partition the database then
mine each partition in main memory using H-struct then
consolidating global frequent pattern [8]. If the database is
dense then it integrates with FP-Growth dynamically by
detecting the swapping condition and constructing the
FP-tree.

This working ensures that it is scalable for both large and
medium size databases and for both sparse and dense datasets
[14]. The advantage of using in-memory pointers is that their
projected database does not need any memory the memory
required only for the set of in-memory pointers.

IV. ANALYSIS AND DISCUSSION
• All the algorithms produce frequent itemsets on the

basis of minimum support.
• Apriori algorithm is quite successful for market based

analysis in which transaction may large but frequent items
generated is small in number.

• The Apriori variations (DHP, DIC, Partition, and
Sample) algorithms among them DHP tries to reduce
candidate itemsets and others try to reduce database scan.

• DHP works well at early stages and performance
deteriorates in later stages and also results in I/O overhead.

• For DIC, Partition, sample algorithm performs worse
where database scan required is less then generating
candidates.

• Vertical Layout based algorithms claims to be faster
than Apriori but require larger memory space then horizontal
layout based because they needs to load candidate, database
and TID list in main memory.

• For projected layout based algorithms, performs better
then all discussed above because of no generation of
candidate sets but the pointes needed to store in memory
require large memory space.

International Journal of Computer and Electrical Engineering, Vol. 3, No. 5, October 2011

698

V. COMPARISION OF ALGORITHMS
TABLE III: COMPARISONS OF ALL TECHNIQUE

 Horizontal layout based algorithms Vertical layout
based algorithm

Projected layout based
algorithms

Algorithm

Parameter
Apripri

Algorithm
DHP

algorithm
Partition

Algorithm DIC algorithm Sample
Algorithm Eclat algorithm FP-tree

Algorithm
H-mine

Algorithm
Storage Structure Array based Array Based Array based Array based Array based Array based Tree based Tree based

Technique

Use Apriori
property and
join and prune
method

Use hashing
technique for
finding
frequent
itemsets

Partition the
database for
finding local
frequent item
first

Based upon
dynamic
insertion of
candidate
items.

Pick any
random sample
for checking
frequency of
whole database
at lower
threshold
support

Use intersection
of Transaction
ids list for
generating
candidate
itemsets.

It constructs
conditional
frequent pattern
tree and condi-
tional pattern
base from
database which
satisfy the mini-
mum support.

It uses the
hyperlink
pointers to
store the
partitioned
projected
database in
main memory.

Memory
utilization

Due to large
amount of
candidate are
produced so
require large
memory space

Require less
space at earlier
passes but
more in later
stages

Each partition
is easily
occupy in main
memory

Require
different
amount of
memory at
different point
of time

Very less
amount of
memory is
needed

Require less
amount of
memory compare
to Apriori if
itemsets are small
in number

Due to compact
structure and no
candidates
generation
require less
memory

Memory is
utilized accord-
ing to needs and
partitions of
projected
database

Databases

Suitable for
sparse
datasets as
well as dense
datasets

Suitable for
medium
databases

Suitable for
large databases

Suitable for
medium and
low databases

Suitable for
any kind of
dataset but
mostly not give
accurate
results

Suitable for
medium and
dense datasets
but not suitable
for small
datasets.

Suitable for
large and
medium
datasets

Suitable for
sparse and
dense datasets.

Time

Execution
time is more
as time
wasted in
producing
candidates at
every time

Execution
time is small
for small
databases.

Execution time
is more
because of
finding locally
frequent then
globally
frequent

Execution
time is small
because
dynamic
itemset are
added
according to
situation.

Execution time
is very much
small.

Execution time
is small then
Apriori
algorithm

Execution time
is large due to
complex
compact data
structure

Execution time
is large then
FP-tree and
others because
of partition the
database.

VI. CONCLUSION
The main objective of this research survey was to analyze

the assessment of mining association rules using frequent
item sets. It was discussed various algorithms like Apriori
algorithm, partition algorithm, DHP algorithm, DIC
algorithm (applicable on Horizontal layout database), Eclat
algorithm (applicable in Vertical layout data base) and
FP-tree algorithm, H-mine algorithm (based on tree
projection). This analysis made a significant to the search of
improving the efficiency if frequent itemsets. Various
classical algorithms strengths and weakness were discussed
and found some algorithms produce candidates sets and some
not, various algorithms are the improved version of the
classical algorithms. In the future also by using above
discussed strengths, weakness, properties of various
algorithms can helps to improve the other hybrid or any other
frequent mining algorithms.

REFERENCES
[1] A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for

mining association rules in large databases. In Proc. Int’l Conf. Very
Large Data Bases (VLDB), pages 432–443, Sept. 1995.

[2] Aggrawal.R, Imielinski.t, Swami.A, Mining Association Rules
between Sets of Items in Large Databases, Proceedings of the 1993
ACM SIGMOD Conference Washington DC, USA, May 1993.

[3] Agrawal.R and Srikant.R. Fast algorithms for mining association rules.
In Proc.Int’l Conf. Very Large Data Bases (VLDB), pages 487–499,
Sept. 1994.

[4] Brin.S, Motwani. R, Ullman. J. D, and S. Tsur. Dynamic itemset
counting and implication rules for market basket analysis. In Proc.
ACM-SIGMOD Int’l Conf. Management of Data (SIGMOD), pages
255–264, May 1997.

[5] C. Borgelt. An Implementation of the FP- growth Algorithm. Proc.
Workshop Open Software for Data Mining (OSDM’05 at KDD’05,
Chicago,IL),1–5.ACMPress, New York, NY, USA 2005.

[6] Han.J, Pei.J, and Yin. Y., mining frequent patterns without candidate
generation. In Proc. ACM-SIGMOD Int’l Conf. Management of Data
(SIGMOD), 2000

[7] Park. J. S., M.S. Chen, and P.S. Yu. An effective hash-based algorithm
for mining association rules. In Proc. ACM-SIGMOD Int’l Conf.
Management of Data (SIGMOD), pages 175–186, San Jose, CA, May
1995.

[8] Pei.J, Han.J, Lu.H, Nishio.S., Tang. S. and Yang. D., H-mine:
Hyper-structure mining of frequent patterns in large databases. In Proc.
Int’l Conf. Data Mining (ICDM), November 2001.

[9] C.Borgelt. Efficient Implementations of Apriori and Eclat. Proc. 1st
IEEE ICDM Workshop on Frequent Item Set Mining Implementations
(FIMI 2003, Melbourne, FL). CEUR Workshop Proceedings 90,
Aachen, Germany 2003.

[10] Toivonen.H. Sampling large databases for association rules. In Proc.
Int’l Conf. Very Large Data Bases (VLDB), pages 134–145, Bombay,
India, Sept. 1996.

[11] Nizar R.Mabrouken, C.I.Ezeife, “A taxonomy of Sequential Pattern
Mining Algorithm “ Proc in ACM Computing Surveys, Vol 43, No 1,
Article 3, Publishing date November 2010.

[12] Yiwu Xie, Yutong Li, Chunli Wang, Mingyu Lu, The Optimization and
Improvement of the Apriori Algorithm, In Proc.Int’l Conf International
Workshop on Education Technology and Training & 2008
International Workshop on Geoscience and Remote Sensing 2008

[13] “Data mining Concepts and Techniques” by By Jiawei Han, Micheline
Kamber, 2006.

[14] S.P Latha, DR. N.Ramaraj, “Agorithm for Efficient Data Mining”,
Proceeding on IEEE International Computational Intelligence and
Multimedia Aplications 2007, pp. 66-70.

International Journal of Computer and Electrical Engineering, Vol. 3, No. 5, October 2011

699

	405-E1092

