
(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Artificial Intelligence

141 | P a g e
www.ijacsa.thesai.org

Comparative Analysis of Various Approaches Used in

Frequent Pattern Mining

Deepak Garg, Hemant Sharma

Thapar University, Patiala

Abstract—Frequent pattern mining has become an important

data mining task and has been a focused theme in data mining

research. Frequent patterns are patterns that appear in a data set

frequently. Frequent pattern mining searches for recurring

relationship in a given data set. Various techniques have been

proposed to improve the performance of frequent pattern mining

algorithms. This paper presents review of different frequent

mining techniques including apriori based algorithms, partition

based algorithms, DFS and hybrid algorithms, pattern based

algorithms, SQL based algorithms and Incremental apriori based

algorithms. A brief description of each technique has been

provided. In the last, different frequent pattern mining

techniques are compared based on various parameters of

importance. Experimental results show that FP- Tree based

approach achieves better performance.

Keywords- Data mining; Frequent patterns; Frequent pattern

mining; association rules; support; confidence; Dynamic item set

counting.

I. INTRODUCTION

Frequent patterns are item sets, subsequences, or
substructures that appear in a data set with frequency no less
than a user-specified threshold. Frequent pattern mining is a
first step in association rule mining. One of the major uses with
association rules is to analyze large amount of supermarket
basket transactions [1-3]. Recently, association rules have been
applied to other areas like outlier’s detection, classification,
clustering etc [4, 6, 8].

Association rules mining can formally be defined as
follows. Let I = {i1, i2, i3, .., im} be a set of attributes called
items. Let D be a set of transactions. Each transaction t ϵ D

consists of a set of items such that t I. A transaction t is said
to contain an item set X if and only if all items within X are
also contained in t. Each transaction also contains a unique
identifier called transaction identification (TID). Support of an
item set is normalized number of occurrences of the item set
within the dataset. An item set is considered as frequent or
large, if the item set has a support that is greater or equal to the
user specified minimum support [25-26].

The most common form of association rules is implication

rule which is in the form of X Y, where X I, Y I

and X Y = Ф. The support of the rule X Y is equal to the
percentage of transactions in D containing X Y. The
confidence of the rule X Y is equal to the percentage of
transactions in D containing X also containing Y. Once the
required minimum support and confidence are specified,

association rule mining becomes finding all association rules
that satisfy the minimum support requirements. The problem
can be further broken down into two steps: mining of frequent
item sets and generating association rules.

The number of possible combinations of item sets increases
exponentially with I and the average transaction length.
Therefore it is infeasible to determine the support of all
possible item sets. When counting the supports of item sets,
there are two strategies. The first strategy is to count the
occurrences directly, whenever an item set is contained in a
transaction, the occurrence of the item set is increased. The
second strategy is to count the occurrences indirectly by
intersecting TID set of each component of the item set. The
TID set of a component X, where X can be either item or item
set, is denoted as X.TID. The support of an item set S = X

Y is obtained by intersecting X.TID Y.TID = S.TID and the
support of S equals S.TID [28, 29].

II. VARIOUS FREQUENT PATTERN MINING TECHNIQUES

A. Apriori-based Algorithms

The first published frequent item set mining algorithm is
Apriori [1]. Apriori uses breadth first search (BFS). At each
level, Apriori reduces the search space by using downward
closure property of item set. If an item set of length k is not
frequent, none of its superset patterns can be frequent.
Candidate frequent item sets, Ck where k is the length of the
item set, are generated before each data scan. The supports of
candidate frequent item sets are counted. Candidate k item sets,
Ck are generated with frequent (k – 1) item sets. Apriori
algorithm achieves good performance by reducing the
candidate item sets iteratively. The problem, however,
associated with Apriori is it requires k data scans to find all
frequent k-item sets. It is very much expensive to scan the large
data base. Dynamic Item set Counting, (DIC) relaxes the strict
separation between generating and counting of item sets [4].
DIC starts counting the support of candidate frequent item sets
as soon as they are being generated. By overlapping counting
and candidate item set generation, DIC reduces the overall data
scans required. Orlando et al. [13] proposed an algorithm that
combines transaction reduction and direct data access. At the
end of each scan, transactions that are potentially useful are
used for the next iteration. A technique called scan reduction
uses candidate 2 item sets to generate subsequent candidate
item sets [12]. If all intermediate data can be held in the main
memory, only one scan is required to generate all candidate
frequent item sets. Another data scan is required to verify
whether the candidate frequent item sets are frequent or not.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Artificial Intelligence

142 | P a g e
www.ijacsa.thesai.org

With all of those improvements, the number of data scans
required by Apriori based algorithms has been reduced
significantly. However, the cost of generating candidate
frequent item sets has not been fully addressed by Apriori
based algorithms. This problem becomes visible when there are
huge numbers of frequent 1 or 2 item sets.

B. Partition-based Algorithms

Partition-based Algorithms [15] solves the problem of high
number of database scans, associated with Apriori-based
algorithm. It requires two complete data scan to mine frequent
item sets. The Partition algorithm divides the dataset into many
subsets so that each subset can be fitted into the main memory.
The basic idea of the Partition-based algorithm is that a
frequent item set must be frequent in at least one subset.
Partition-based algorithm generates local frequent item sets for
each partition during the first data scan. Since the whole
partition can be fitted into the main memory, the complete local
frequent item sets can be mined without any disk I/O
operations. The local frequent item sets are added to the global
candidate frequent item sets. In the second data scan, false
candidates are removed from the global candidate frequent item
sets. In a special case where each subset contains identical local
frequent item sets, Partition algorithm can mine all frequent
item sets with a single data scan. However, when the data is
distributed unevenly across different partitions, this algorithm
may generate a lot of false candidates from a small number of
partitions. By employing the knowledge collected during the
mining process, false global candidate frequent item sets are
pruned when they are found that they cannot be frequent. In
addition, those algorithms reduce the number of scans in the
worse case to (2b- 1)/b where b is the number of partitions.

C. DFS and Hybrid Algorithms

Eclat and Clique [16] combine both depth first search
(DFS) and intersection counting. Since intersection counting is
used, no complicated data structure is required. These hybrid
algorithms reduces the memory requirement, since only the
TID sets of the path item sets from the root to the leaves have
to be kept in the memory simultaneously. Intersection of TID
sets can be stopped as soon as the remaining length of the
shortest TID set is shorter than the required support minus the
counted support value. The intersection of TID sets of 1-item
set to generate frequent 2 item sets is expensive.. The maximal
hyper graph clique clustering is applied to 2-frequent item sets
to generate a refined set of maximal item sets. Hipp et al. [10]
pointed out that DFS cannot prune candidate k item sets by
checking frequent (k – 1) item sets, because DFS searches from
the root to the leaves of the tree without using any subsets
relationship. A hybrid approach of BFS and DFS is proposed
in [11]. It is cheaper to use item set counting with BFS to
determine the supports, when the number of candidate frequent
item sets is small. When the number of candidate frequent item
sets is relatively large, the hybrid algorithm switches to TID set
intersection with DFS, since simple TID set intersection is
more efficient than occurrence counting when the number of
candidate frequent item sets is relatively large. This results in
additional costs to generate TID sets. The authors proposed
[11] to use hash-tree-like structure to minimize the cost of
transition. However, the authors do not provide an algorithm to
determine the best condition to switch the strategy. In the

evaluation, the authors provide parameters to change in
strategy. However, those parameters may not be generalized
enough for all kinds of datasets. Incorrect timing of changing
strategy may decrease the performance of hybrid algorithm.

D. Pattern-Growth Algorithms

Two major costs of Apriori based algorithms are the cost to
generate candidate frequent item sets and the cost associated
with I/O operations. The issues related to I/O have been
addressed, but the issues related to candidate frequent item sets
generation remain open. If there are n frequent 1 item sets,
Apriori based algorithms would require to generate
approximately n2/2 candidate frequent item sets. Secondly, the
memory required to hold the candidate frequent item sets and
their supports could be substantial. For example, when n equals
10,000, there would be more than 108 length 2 candidate
frequent item sets. If we assume that it requires 4 bytes to hold
the support and 4 bytes to hold the item sets, approximately 0.5
gigabytes of main memory would be needed to store the
information [18]. Furthermore, the memory required does not
include the overhead associated with the data structure. Also
the cost required to count the support of candidate item sets
may be large. As far as Apriori-based algorithms are
concerned, the run time increases as the support value
decreases. Therefore, the cost of candidate frequent item sets
generation of Apriori based algorithms will exceeds than the
cost of I/O [24]. Han et al. [9] proposed a data structure called
frequent pattern tree or FP Tree. FP-growth mines frequent
item sets from FP-Tree without generating candidate frequent
item sets. FP-Tree is an extension of prefix tree structure. Only
frequent items get stored in the tree. Each node contains the
item’s label along with its frequency. The paths from the root
to the leaves are arranged according to the support value of the
items with the frequency of each parent is greater than or equal
to the sum of its children’s frequency. The construction of FP-
Tree requires two data scans. In the first scan, the support value
of each item is found. This calculated support values are used
in the second scan to sort the items within transactions in
descending order. If two transactions share a common prefix,
the shared portion is merged and the frequencies of the nodes
are incremented accordingly. Nodes with the same label are
connected with an item link. The item link is used to facilitate
frequent pattern mining. In addition, each FP-Tree has a header
that contains all frequent items and pointers to the beginning of
their respective item links. FP-growth partitions the FP-Tree
based on the prefixes. FP-growth traverses the paths of FP-Tree
recursively to generate frequent item sets. Pattern fragments are
concatenated to ensure all frequent item sets are generated
properly. Thus FP-growth avoids the costly operations for
generation and testing operations of candidate item sets. When
the data is sparse, the compression achieved by the FP-Tree is
small and the FP Tree is bushy. As a result, FP-growth would
spend a lot of effort to concatenate fragmented patterns with no
frequent item sets being found. A new data structure called H-
struct is introduced in [14]. In this, transactions are sorted with
an arbitrary ordering scheme. Only frequent items are projected
in the H-struct. H-struct consists of projected transactions and
each node in the projected transactions contains item label and
a hyper link pointing to the next occurrence of the item. A
header table is created for H-struct. The header contains
frequencies of all items, their supports and hyper link to the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Artificial Intelligence

143 | P a g e
www.ijacsa.thesai.org

first transaction containing given item. H-mine mines the H-
struct recursively by building a new header table for each item
in the original header with subsequent headers omitting items
that have been mined previously. For each sub- header, H-mine
traverses the H-struct according to the hyper links and finds
frequent item sets for the local header. At the same time, H-
mine builds links for items that have not been mined in the
local header. Those links are used to find conditional frequent
patterns within the local header. The process is repeated until
all frequent item sets have been mined. In case of a dense
dataset, H-struct is not as efficient as FP-Tree because FP-Tree
allows compression.

E. Incremental Update with Apriori-based Algorithms

Complete dataset is normally huge and the incremental
portion is relatively small compared to the complete dataset. In
many cases, it is not feasible to perform a complete data mining
process while transactions are being added continuously.
Therefore, incremental data mining algorithms have to reuse
the existing information as much as possible, so that either
computational cost and/or I/O cost can be reduced. A general
incremental mining algorithm called Fast Update 2 (FUP2),
that allows both addition and deletion of transactions was
proposed in [7]. The major idea of FUP2 is to reduce the cost
of candidate frequent item sets generation. Incremental portion
of the dataset is scanned; frequent patterns in the incremental
data are compared with the existing frequent item sets in the
original dataset. Previous frequent item sets are removed if they
are no longer frequent after the incremental portion of the data
is added or removed. The supports of previous frequent item
sets that are still frequent are updated to reflect the changes. In
those ways, previous frequent item sets that are still frequent
are not required to be checked for their supports again. New (k
+ 1) candidate frequent item sets are generated from frequent k
item sets. The entire updated dataset is scanned to verify those
newly added candidate item sets if they are indeed frequent.
The process is repeated until the set of candidate frequent item
set becomes empty. FUP2 offers some benefits over the
original Apriori algorithm. However, it still requires multiple
scans of the dataset. Another incremental Apriori based
algorithm is called Sliding Window Filtering (SWF) [12]. SWF
incorporates the main idea of Partition algorithm with Apriori
to allow incremental mining. SWF divides the dataset into
several partitions. During the scan of partitions, a filtering
threshold is employed in each partition to generate candidate
frequent 2 item sets. When a candidate 2 item set is found to be
frequent in the newly scanned partition, the partition number
and the frequency of the item set are stored. Cumulative
information about candidate frequent 2 item sets is selectively
carried over toward subsequence partition scans. Cumulative
frequencies of previous generated candidate frequent 2 item
sets are maintained as new partitions are being scanned. False
candidate frequent item sets are pruned when the cumulative
support of the candidate frequent item sets fall below required
proportional support since they have become frequent. Once
incremental portion of the dataset is scanned, scan reduction
techniques are used to generate all subsequence candidate
frequent items sets [5]. Another data scan over the whole
dataset is required to confirm the frequent item sets. In the case
of data removal, the partition to be removed are scanned, the
cumulative count and the start partition number of candidate

length 2 item sets are modified accordingly. Although SWF
achieves better performance than pervious algorithms, the
performance of SWF still depends on the selection of partition
size and removal of data can only be done at partition level.

F. SQL-based algorithms

DBMS can facilitate data mining to become an online,
robust, scalable and concurrent process by complementing the
existing querying and analytical functions. The first attempt to
the particular problem of integrated frequent item set mining
was the SETM algorithm [10, 17], expressed as SQL queries
working on relational tables. The Apriori algorithm [1] opened
up new prospects for FIM. The database- coupled variations of
the Apriori algorithm were carefully examined in [19]. The
SQL-92 based implementations were too slow, but the SQL
implementations enhanced with object-relational extensions
(SQL-OR) performed acceptable. The so- called Cache-Mine
implementation had the best overall performance, where the
database-independent mining algorithm cached the relevant
data in a local disk cache [21-23]. SQL based frequent mining
using FP-tree provide best performance than other SQL based
techniques [20]. Although an FP-tree is rather compact, it is
unrealistic to construct a main memory- based FP-tree when
the database is large. However using RDBMSs provides us the
benefits of using their buffer management systems specially
developed for freeing the user applications from the size
considerations of the data. And moreover, there are several
potential advantages of building mining algorithms to work on
RDBMSs. An interesting alternative is to store a FP-tree in a
table. There are two approaches in this category - FP, EFP
(Expand Frequent Pattern). They are different in the
construction of frequent pattern tree table, named FP. FP
approach checks each frequent item whether it should be
inserted into a table FP or not one by one to construct FP. EFP
approach introduces a temporary table EFP, thus table FP can
generate from EFP. According to the properties of FP-tree, FP-
tree can be presented by a table FP with three column
attributes: item identifier (item), the number of transactions that
contain this item in a sub- path (count), and item prefix sub-tree
(path). The field path is beneficial not only to construct the
table FP but also to find all frequent patterns from FP. In the
construction of table FP, the field path is an important
condition to judge if an item in frequent item table F should be
insert into the table FP or update the table FP by incrementing
the item's count by 1. If an item does not exist in the table FP or
there exist the same items as this item in the table FP but their
corresponding path are different, insert the item into table FP.
In the process of constructing conditional pattern base for each
frequent item, only need to derive its entire path in the table FP
as a set of conditional paths, which co-occurs with it.

III. COMPARISON OF VARIOUS FREQUENT PATTERN

MINING TECHNIQUES

Comparison of different FPM techniques is given in Table
1, where A is length of maximal frequent item set and B is
number of partitions. As Shown In the table, various algorithms
are compared against four parameters, number of database
scans required for the generation of frequent item set, the
candidate generation technique used, whether the frequent item
generation approach is incremental or not, and how the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Artificial Intelligence

144 | P a g e
www.ijacsa.thesai.org

algorithm is sensitive to the change in user parameters.
Apriori-based methods use efficient technique for pruning the
candidate item sets, but they require lots of computational time
as well as multiple database scans to generate candidate item
sets. Partition-based methods limit the size of candidate item
sets. Partition algorithm may generate a lot of false candidates
from a small number of partitions. FP-Tree based methods
require only two database scans in order to generate frequent
patterns. These methods use a compact tree- structure to
represent the entire database. They do not require candidate
generation, reducing the computational cost.

IV. COMPARISON OF APRIORI AND PRIMITIVE ASSOCIATION

RULE MINING

Comparison of the algorithms, Apriori and Primitive
Association Rule Mining is given in this section. There are
many advantages of Primitive Association Rule Mining over
Apriori.

Apriori uses candidate Generate function for generating
every candidate k-item sets and it takes enormous amount of
time to generate candidate k+1-item sets from large k item sets.
However, Primitive Association Rule Mining does not use this
function; instead it uses graph based approach after generating
of large 2–item sets.

In primitive association, a graph is constructed with large
two item sets. Using graph, large three item sets can be
generated easily without scanning the database.

At each pass in primitive association, it is enough to use
graph with k large item sets for generating k+1 candidate item
sets. Traversal of one link list (adjacency list) takes less time as
compared to Apriori generation function.

Secondly in Apriori approach we are accessing transaction
as a whole or we can divide into parts but it takes lot of
memory whereas in Primitive Association Rule Mining,

transactions are converted into bit vector which is based on
items. Bit vector representation takes very less times as well as
memory, theoretically 32 times less. Primitive Association
Rule Mining takes less time since transactions are represented
in bit vector form, and we are using logical AND, OR
operation which is very fast. Further the bit representation
consumes less memory also.

A. Comparison of AprioriTid and Apriori Hybrid

AprioriTid and AprioriHybrid are just variations of Apriori.
In Apriori, at every step, we have to find candidate k-item sets,
and we have to scan whole database at each k, which is time
consuming. So, AprioriTid algorithm has given a solution for
finding candidate k-item sets without scanning whole
transaction. This algorithm works on the basis of transaction Id
that is associated with every transaction. Apriori Hybrid is
combined approach of Apriori and Apriori Tid, in which if
some part of transactions (which is stored in other place) do not
fit into the memory then use Apriori algorithm, otherwise swap
Apriori algorithm to Apriori Tid.

In general, using Apriori AprioriTid and AprioriHybrid
algorithms we can find frequent item sets, whereas we assume
that items and transactions have equal weights. Sometimes, it is
important to know that whether every items have equal weights
or not, if all items have equal weights then Apriori and their
variation can do good job for finding frequent item sets, and if
weights of items are not equal, then Apriori and their variations
do not work. So, to solve this problem, we have two solutions,
whether we can assign weights to items and transactions, or to
use some algorithms, so that it can give weights of items and
weights of transactions. If we have weights of items in the
beginning in the database then we can find frequent item sets
using weighted association rule of mining, otherwise we can
use association rule of mining without pre-assign weights,
which gives weights of items and weights of transactions using
HITS algorithm.

TABLE I. COMPARISON OF VARIOUS FREQUENT PATTERN MINING

 Apriori-Based Partition
Based

Incremental
Apriori

FP Tree SQL Based

Number of Database Scan

For Best Case Scenario

2 1 2 2 1

Number of Database Scan
For Worst Case

A+1 (2B-1)/B A+1 2 1

Candidate Generation Needed or Not Yes Yes Yes No No

Incremental Mining Possible No No Yes No No

Sensitive to Change in User Parameter Yes Yes Yes Yes Yes

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Artificial Intelligence

145 | P a g e
www.ijacsa.thesai.org

B. Experimental Results

Following are real life datasets which were taken, these are:

 Kosarak- The kosarak dataset comes from the click-
stream data of a Hungarian online news portal, Number of
Instances =990,002, Number of Attributes= 41,270.

TABLE II. KOSARAK DATABASE

Large Item Sets Time taken by

Apriori

Time taken by

Primitive

3 0.46 0.29

4 2.166 1.86

5 12.04 11.11

Figure 1. Kosark Database

The results clearly show that Primitive algorithm is taking
less time as compared to the apriori algorithm.

Mushroom- This data set includes descriptions of
hypothetical samples corresponding to 23 species of gilled
mushrooms. Each species is identified as definitely edible,
definitely poisonous, or of unknown edibility and not
recommended. This latter class was combined with the

poisonous one. The Guide clearly states that there is no simple
rule for determining the edibility of a mushroom. Number of
Instances = 8124, Number of Attributes = 22.

TABLE III. FOR MUSHROOM DATABASE

Large Item Sets Time taken by

Apriori

Time taken by

Primitive

3 13.47 13.07

4 13.65 13.35

5 13.79 13.5

Figure 2. Mushroom Database

Experimental result clearly shows that Apriori is taking
more time.

Chess - A game datasets.

Attribute Information: Classes (2): -- White-can-win
("won") and White-cannot-win ("nowin").
It believes that White is deemed to be unable to win if the
Black pawn can safely advance. Number of Instances= 3196,
Number of Attributes=36.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Artificial Intelligence

146 | P a g e
www.ijacsa.thesai.org

TABLE IV. FOR CHESS DATABASE

Large Item Sets Time taken by
Apriori

Time taken by
Primitive

3 0.41 0.37

4 4.64 4.04

5 50.43 43.43

Figure 3. Chess Database

By looking at the above results it is clear that FP- Tree
based approach are showing a clear edge because the number
of database scans required are less which in turn reduces the
computational time. Because the database is represented in tree
structures which are taking less space so the overall memory
requirement reduces.

CONCLUSION

Frequent pattern mining is the first step for association rule
mining. Association rule mining has found many applications
other than market basket analysis, including applications in
marketing, customer segmentation, medicine, e-commerce,
classification, clustering, web mining, bioinformatics and
finance. Various techniques have been found to mine frequent
patterns.

Each technique has its own pros and cons. Performance of
particular technique depends on input data and available
resources. Among all of the techniques discussed above, FP-

Tree based approach achieves better performance by requiring
only two database scans hence reducing the computational
time. It takes less memory by representing large database in
compact tree-structure. But a word of caution here that
association rules should not be used directly for prediction
without further analysis or domain knowledge. They are,
however, a helpful starting point for further exploration &
understanding of data. Experimental results have shown
advantages of Primitive Association Rule Mining over Apriori.

REFERENCES

[1] Agrawal Rakesh, Imilienski T., and Swami Arun. Mining association
rules between sets of items in large datasets. SIGMOD, 207-216, 1993

[2] Bayardo Roberto J. Efficiently Mining Long Patterns from Databases.
SIGMOD, 83-93, Seattle, Washington, June 1998

[3] Brin Sergey, Motwani Rajeev, and Silverstein Craig. Beyond market

baskets: Generalizing association rules to correlations. SIGMOD, 265-
276, Tucson, AZ, USA, May 1997

[4] Brin Sergey, Motwani Rajeev, Ullman Jeffrey D., and Tsur Shalom.

Dynamic itemset counting and implication rules for market basket data.
SIGMOD, Tucson, AZ, USA, May 1997

[5] Chen Ming Syan, Park J. S., and Yu P. S. Efficient Data Mining for Path

Traversal Patterns. IEEE Transactions on Knowledge and Data
Engineering 10(2), 209-221, 1998

[6] Chen Xiaodong and Petrounias Ilias. Discovering temporal association

rules: Algorithms, language and system. 2000 IEEE 16th International
Conference on Data Engineering,San Diego, CA, USA, February 2000

[7] Cheung David W., Lee S. D., and Kao Benjamin. A General Incremental

Technique for Maintaining Discovered Association Rules.
Proc.International Conference On Database Systems For Advanced

Applications, April 1997

[8] Han Jiawei, Pei Jian, Mortazavi-Asl Behzad, Chen Qiming, Dayal

Umeshwar, and Hsu Mei-Chun. FreeSpan: Frequent pattern-projected
sequential pattern mining. Boston, Ma, August 2000

[9] Han Jiawei, Pei Jian, and Yin Yiwen. Mining Frequent Patterns without

Candidate Generation. SIGMOD, 1-12, Dallas, TX, May 2000

[10] Hipp Jochen, Güntzer Ulrich, and Nakhaeizadeh Gholamreza.
Algorithms of Association Rule Mining - A General Survey and

Comparison. SIGKDD Explorations 2(1), 58-64, 2000

[11] Hipp Jochen, Güntzer Ulrich, and Nakhaeizadeh Gholamreza. Mining
Association Rules: Deriving a Superior Algorithm by Analyzing Today's

Approaches. 159-168, Lyon, France, September 2000

[12] Lee Chang Hung, Lin Cheng Ru, and Chen Ming Syan. Sliding Window
Filtering: An Efficient Method for incremental Mining on a Time-

Variant Database. Proceedings of 10th International Conference on
Information and Knowledge Management, 263-270, November 2001

[13] Orlando Salvatore, Palmerini P., and Perego Raffaele. Enhancing the

Apriori Algorithm for Frequent Set Counting. 3rd International
Conference on Data Warehousing and Knowledge Discovery, Germany,

September 2001

[14] Pei Jian, Han Jiawei, Nishio Shojiro, Tang Shiwei, and Yang Dongqing.

H-Mine: Hyper- Structure Mining of Frequent Patterns in Large
Databases. Proc.2001 Int.Conf.on Data Mining, San Jose, CA,

November 2001

[15] Savasere Ashok, Omiecinski Edward, and Navathe Shamkant. An
Efficient Algorithm for Mining Association Rules in Large Databases.

Proceedings of the Very Large Data Base Conference, September 1995

[16] Zaïane Osmar R. and Oliveira Stanley R. M. Privacy preserving frequent
itemset mining. Workshop on Privacy, Security, and Data Mining, in

conjunction with the IEEE International Conference on Data Mining,
Japan, December 2002

[17] M. Houtsma and A. Swami. Set-oriented data mining in relational

databases. Data Knowl. Eng.,245–262, 1995

[18] Christian Borgelt, An Implementation of the FP-growth Algorithm,
OSDM’05, 2005

(IJACSA) International Journal of Advanced Computer Science and Applications,
Special Issue on Artificial Intelligence

147 | P a g e
www.ijacsa.thesai.org

[19] S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule

mining with relational database systems: alternatives and implications.
In SIGMOD, International conference on Management of data, pages

343–354, 1998

[20] X. Shang, K.-U. Sattler, and I. Geist. SQL based frequent pattern mining

with fp-growth. In INAP/WLP, pages 32–46, 2004

[21] R. Agrawal and K. Shim. Developing tightly-coupled data mining
application on a relational database system. In Proc.of the 2nd Int. Conf.

on Knowledge Discovery in Database and Data Mining,
Portland,Oregon, 1996

[22] J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. DMQL: A data

mining query language for relational database. In Proc. Of the 1996
SIGMOD workshop on research issues on data mining and knowledge

discovery, Montreal, Canada, 1996

[23] R. Meo, G. Psaila, and S. Ceri. A new SQL like operator for mining
association rules. In Proc. Of the 22nd Int. Conf. on Very Large

Databases, Bombay, India, 1996

[24] Wang Ke, Tang Liu, Han Jiawei, and Liu Junqiang. Top down FP-

Growth for Association Rule Mining. Proc.Pacific- Asia Conference,
PAKDD 2002, 334-340, Taipei, Taiwan, May 2002

[25] Ozden Banu, Ramaswamy Sridhar, and Silberschatz Avi. Cyclic
association rules. The 1998 14th International Conference on Data

Engineering, 412-421, Orlando, FL, USA, February 1998

[26] Wang Jiinlong, Xu Conglfu, Cben Weidong, Pan Yunhe, Survey of the
Study on Frequent Pattern Mining in Data Streams, 5917-5920, IEEE

International Conference on Systems, Man and Cybernetics, 2004

[27] Jiawei Han, Hong Cheng, Dong Xin, Xifeng Yan, Frequent pattern
mining: current status and future directions, 57-60, Data Mining

Knowledge Discovery, 2007

[28] R. srikant, R. Agarwal, Mining sequential patterns: generalization and
performance improvements, 1-15, IBM Research report, 1996

[29] Balazs Racz,Ferenc Bodon,Lars Schmidt-Thieme., On Benchmarking

Frequent Itemset Mining Algorithms, from Measurement to Analysis,
37-42, Chicago, Illinois, USA, august 2005.

