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Abstract—Frequent pattern mining has become an important 

data mining task and has been a focused theme in data mining 

research. Frequent patterns are patterns that appear in a data set 

frequently. Frequent pattern mining searches for recurring 

relationship in a given data set. Various techniques have been 

proposed to improve the performance of frequent pattern mining 

algorithms. This paper presents review of different frequent 

mining techniques including apriori based algorithms, partition 

based algorithms, DFS and hybrid algorithms, pattern based 

algorithms, SQL based algorithms and Incremental apriori based 

algorithms. A brief description of each technique has been 

provided. In the last, different frequent pattern mining 

techniques are compared based on various parameters of 

importance.  Experimental results show that FP- Tree based 

approach achieves better performance. 
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I.  INTRODUCTION 

Frequent patterns are item sets, subsequences, or 
substructures that appear in a data set with frequency no less 
than a user-specified threshold. Frequent pattern mining is a 
first step in association rule mining. One of the major uses with 
association rules is to analyze large amount of supermarket 
basket transactions [1-3]. Recently, association rules have been 
applied to other areas like outlier’s detection, classification, 
clustering etc [4, 6, 8].   

Association rules mining can formally be defined as 
follows. Let I = {i1, i2, i3, .., im} be a set of attributes called 
items. Let D be a set of transactions. Each transaction t ϵ D 

consists of a set of items such that t  I. A transaction t is said 
to contain an item set X if and only if all items within X are 
also contained in t. Each transaction also contains a unique 
identifier called transaction identification (TID). Support of an 
item set is normalized number of occurrences of the item set 
within the dataset. An item set is considered as frequent or 
large, if the item set has a support that is greater or equal to the 
user specified minimum support [25-26].   

The most common form of association rules is implication 

rule which is in the form of X  Y,  where X  I, Y   I 

and X  Y = Ф. The support of the rule X Y is equal to the 
percentage of transactions in D containing X  Y. The 
confidence of the rule X Y is equal to the percentage of 
transactions in D containing X also containing Y. Once the 
required minimum support and confidence are specified, 

association rule mining becomes finding all association rules 
that satisfy the minimum support requirements. The problem 
can be further broken down into two steps: mining of frequent 
item sets and generating association rules. 

The number of possible combinations of item sets increases 
exponentially with I and the average transaction length. 
Therefore it is infeasible to determine the support of all 
possible item sets. When counting the supports of item sets, 
there are two strategies. The first strategy is to count the 
occurrences directly, whenever an item set is contained in a 
transaction, the occurrence of the item set is increased. The 
second strategy is to count the occurrences indirectly by 
intersecting TID set of each component of the item set. The 
TID set of a component X, where X can be either item or item 
set, is denoted as X.TID. The support of an item set S = X  

Y is obtained by intersecting X.TID Y.TID = S.TID and the 
support of S equals S.TID [28, 29].  

II. VARIOUS FREQUENT PATTERN MINING TECHNIQUES 

A. Apriori-based Algorithms 

The first published frequent item set mining algorithm is 
Apriori [1]. Apriori uses breadth first search (BFS). At each 
level, Apriori reduces the search space by using downward 
closure property of item set.  If an item set of length k is not 
frequent, none of its superset patterns can be frequent. 
Candidate frequent item sets, Ck where k is the length of the 
item set, are generated before each data scan. The supports of 
candidate frequent item sets are counted. Candidate k item sets, 
Ck are generated with frequent (k – 1) item sets. Apriori 
algorithm achieves good performance by reducing the 
candidate item sets iteratively. The problem, however, 
associated with Apriori is it requires k data scans to find all 
frequent k-item sets. It is very much expensive to scan the large 
data base. Dynamic Item set Counting, (DIC) relaxes the strict 
separation between generating and counting of item sets [4]. 
DIC starts counting the support of candidate frequent item sets 
as soon as they are being generated. By overlapping counting 
and candidate item set generation, DIC reduces the overall data 
scans required. Orlando et al. [13] proposed an algorithm that 
combines transaction reduction and direct data access. At the 
end of each scan, transactions that are potentially useful are 
used for the next iteration. A technique called scan reduction 
uses candidate 2 item sets to generate subsequent candidate 
item sets [12]. If all intermediate data can be held in the main 
memory, only one scan is required to generate all candidate 
frequent item sets. Another data scan is required to verify 
whether the candidate frequent item sets are frequent or not.  
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With all of those improvements, the number of data scans 
required by Apriori based algorithms has been reduced 
significantly. However, the cost of generating candidate 
frequent item sets has not been fully addressed by Apriori 
based algorithms. This problem becomes visible when there are 
huge numbers of frequent 1 or 2 item sets. 

B. Partition-based Algorithms 

Partition-based Algorithms [15] solves the problem of high 
number of database scans, associated with Apriori-based 
algorithm. It requires two complete data scan to mine frequent 
item sets. The Partition algorithm divides the dataset into many 
subsets so that each subset can be fitted into the main memory. 
The basic idea of the Partition-based algorithm is that a 
frequent item set must be frequent in at least one subset. 
Partition-based algorithm generates local frequent item sets for 
each partition during the first data scan. Since the whole 
partition can be fitted into the main memory, the complete local 
frequent item sets can be mined without any disk I/O 
operations. The local frequent item sets are added to the global 
candidate frequent item sets. In the second data scan, false 
candidates are removed from the global candidate frequent item 
sets. In a special case where each subset contains identical local 
frequent item sets, Partition algorithm can mine all frequent 
item sets with a single data scan. However, when the data is 
distributed unevenly across different partitions, this algorithm 
may generate a lot of false candidates from a small number of 
partitions. By employing the knowledge collected during the 
mining process, false global candidate frequent item sets are 
pruned when they are found that they cannot be frequent. In 
addition, those algorithms reduce the number of scans in the 
worse case to (2b- 1)/b where b is the number of partitions. 

C. DFS and Hybrid Algorithms  

Eclat and Clique [16] combine both depth first search 
(DFS) and intersection counting. Since intersection counting is 
used, no complicated data structure is required. These hybrid 
algorithms reduces the memory requirement, since only the 
TID sets of the path item sets from the root to the leaves have 
to be kept in the memory simultaneously. Intersection of TID 
sets can be stopped as soon as the remaining length of the 
shortest TID set is shorter than the required support minus the 
counted support value. The intersection of TID sets of 1-item 
set to generate frequent 2 item sets is expensive.. The maximal 
hyper graph clique clustering is applied to 2-frequent item sets 
to generate a refined set of maximal item sets. Hipp et al. [10] 
pointed out that DFS cannot prune candidate k item sets by 
checking frequent (k – 1) item sets, because DFS searches from 
the root to the leaves of the tree without using any subsets 
relationship.  A hybrid approach of BFS and DFS is proposed 
in [11]. It is cheaper to use item set counting with BFS to 
determine the supports, when the number of candidate frequent 
item sets is small. When the number of candidate frequent item 
sets is relatively large, the hybrid algorithm switches to TID set 
intersection with DFS, since simple TID set intersection is 
more efficient than occurrence counting when the number of 
candidate frequent item sets is relatively large. This results in 
additional costs to generate TID sets. The authors proposed 
[11] to use hash-tree-like structure to minimize the cost of 
transition. However, the authors do not provide an algorithm to 
determine the best condition to switch the strategy. In the 

evaluation, the authors provide parameters to change in 
strategy. However, those parameters may not be generalized 
enough for all kinds of datasets. Incorrect timing of changing 
strategy may decrease the performance of hybrid algorithm. 

D. Pattern-Growth Algorithms 

Two major costs of Apriori based algorithms are the cost to 
generate candidate frequent item sets and the cost associated 
with I/O operations. The issues related to I/O have been 
addressed, but the issues related to candidate frequent item sets 
generation remain open. If there are n frequent 1 item sets, 
Apriori based algorithms would require to generate 
approximately n2/2 candidate frequent item sets. Secondly, the 
memory required to hold the candidate frequent item sets and 
their supports could be substantial. For example, when n equals 
10,000, there would be more than 108 length 2 candidate 
frequent item sets. If we assume that it requires 4 bytes to hold 
the support and 4 bytes to hold the item sets, approximately 0.5 
gigabytes of main memory would be needed to store the 
information [18]. Furthermore, the memory required does not 
include the overhead associated with the data structure. Also 
the cost required to count the support of candidate item sets 
may be large. As far as Apriori-based algorithms are 
concerned, the run time increases as the support value 
decreases. Therefore, the cost of candidate frequent item sets 
generation of Apriori based algorithms will exceeds than the 
cost of I/O [24]. Han et al. [9] proposed a data structure called 
frequent pattern tree or FP Tree. FP-growth mines frequent 
item sets from FP-Tree without generating candidate frequent 
item sets. FP-Tree is an extension of prefix tree structure. Only 
frequent items get stored in the tree. Each node contains the 
item’s label along with its frequency. The paths from the root 
to the leaves are arranged according to the support value of the 
items with the frequency of each parent is greater than or equal 
to the sum of its children’s frequency. The construction of FP-
Tree requires two data scans. In the first scan, the support value 
of each item is found. This calculated support values are used 
in the second scan to sort the items within transactions in 
descending order. If two transactions share a common prefix, 
the shared portion is merged and the frequencies of the nodes 
are incremented accordingly. Nodes with the same label are 
connected with an item link. The item link is used to facilitate 
frequent pattern mining. In addition, each FP-Tree has a header 
that contains all frequent items and pointers to the beginning of 
their respective item links. FP-growth partitions the FP-Tree 
based on the prefixes. FP-growth traverses the paths of FP-Tree 
recursively to generate frequent item sets. Pattern fragments are 
concatenated to ensure all frequent item sets are generated 
properly. Thus FP-growth avoids the costly operations for 
generation and testing operations of candidate item sets. When 
the data is sparse, the compression achieved by the FP-Tree is 
small and the FP Tree is bushy. As a result, FP-growth would 
spend a lot of effort to concatenate fragmented patterns with no 
frequent item sets being found. A new data structure called H-
struct is introduced in [14]. In this, transactions are sorted with 
an arbitrary ordering scheme. Only frequent items are projected 
in the H-struct. H-struct consists of projected transactions and 
each node in the projected transactions contains item label and 
a hyper link pointing to the next occurrence of the item. A 
header table is created for H-struct. The header contains 
frequencies of all items, their supports and hyper link to the 
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first transaction containing given item. H-mine mines the H-
struct recursively by building a new header table for each item 
in the original header with subsequent headers omitting items 
that have been mined previously. For each sub- header, H-mine 
traverses the H-struct according to the hyper links and finds 
frequent item sets for the local header. At the same time, H-
mine builds links for items that have not been mined in the 
local header. Those links are used to find conditional frequent 
patterns within the local header. The process is repeated until 
all frequent item sets have been mined. In case of a dense 
dataset, H-struct is not as efficient as FP-Tree because FP-Tree 
allows compression.   

E.  Incremental Update with Apriori-based Algorithms 

Complete dataset is normally huge and the incremental 
portion is relatively small compared to the complete dataset. In 
many cases, it is not feasible to perform a complete data mining 
process while transactions are being added continuously. 
Therefore, incremental data mining algorithms have to reuse 
the existing information as much as possible, so that either 
computational cost and/or I/O cost can be reduced.  A general 
incremental mining algorithm called Fast Update 2 (FUP2), 
that allows both addition and deletion of transactions was 
proposed in [7]. The major idea of FUP2 is to reduce the cost 
of candidate frequent item sets generation. Incremental portion 
of the dataset is scanned; frequent patterns in the incremental 
data are compared with the existing frequent item sets in the 
original dataset. Previous frequent item sets are removed if they 
are no longer frequent after the incremental portion of the data 
is added or removed. The supports of previous frequent item 
sets that are still frequent are updated to reflect the changes. In 
those ways, previous frequent item sets that are still frequent 
are not required to be checked for their supports again. New (k 
+ 1) candidate frequent item sets are generated from frequent k 
item sets. The entire updated dataset is scanned to verify those 
newly added candidate item sets if they are indeed frequent. 
The process is repeated until the set of candidate frequent item 
set becomes empty. FUP2 offers some benefits over the 
original Apriori algorithm. However, it still requires multiple 
scans of the dataset. Another incremental Apriori based 
algorithm is called Sliding Window Filtering (SWF) [12]. SWF 
incorporates the main idea of Partition algorithm with Apriori 
to allow incremental mining. SWF divides the dataset into 
several partitions. During the scan of partitions, a filtering 
threshold is employed in each partition to generate candidate 
frequent 2 item sets. When a candidate 2 item set is found to be 
frequent in the newly scanned partition, the partition number 
and the frequency of the item set are stored. Cumulative 
information about candidate frequent 2 item sets is selectively 
carried over toward subsequence partition scans. Cumulative 
frequencies of previous generated candidate frequent 2 item 
sets are maintained as new partitions are being scanned. False 
candidate frequent item sets are pruned when the cumulative 
support of the candidate frequent item sets fall below required 
proportional support since they have become frequent. Once 
incremental portion of the dataset is scanned, scan reduction 
techniques are used to generate all subsequence candidate 
frequent items sets [5]. Another data scan over the whole 
dataset is required to confirm the frequent item sets. In the case 
of data removal, the partition to be removed are scanned, the 
cumulative count and the start partition number of candidate 

length 2 item sets are modified accordingly. Although SWF 
achieves better performance than pervious algorithms, the 
performance of SWF still depends on the selection of partition 
size and removal of data can only be done at partition level. 

F. SQL-based algorithms  

DBMS can facilitate data mining to become an online, 
robust, scalable and concurrent process by complementing the 
existing querying and analytical functions. The first attempt to 
the particular problem of integrated frequent item set mining 
was the SETM algorithm [10, 17], expressed as SQL queries 
working on relational tables. The Apriori algorithm [1] opened 
up new prospects for FIM. The database- coupled variations of 
the Apriori algorithm were carefully examined in [19]. The 
SQL-92 based implementations were too slow, but the SQL 
implementations enhanced with object-relational extensions 
(SQL-OR) performed acceptable. The so- called Cache-Mine 
implementation had the best overall performance, where the 
database-independent mining algorithm cached the relevant 
data in a local disk cache [21-23].  SQL based frequent mining 
using FP-tree provide best performance than other SQL based 
techniques [20]. Although an FP-tree is rather compact, it is 
unrealistic to construct a main memory- based FP-tree when 
the database is large. However using RDBMSs provides us the 
benefits of using their buffer management systems specially 
developed for freeing the user applications from the size 
considerations of the data. And moreover, there are several 
potential advantages of building mining algorithms to work on 
RDBMSs.  An interesting alternative is to store a FP-tree in a 
table. There are two approaches in this category - FP, EFP 
(Expand Frequent Pattern). They are different in the 
construction of frequent pattern tree table, named FP. FP 
approach checks each frequent item whether it should be 
inserted into a table FP or not one by one to construct FP. EFP 
approach introduces a temporary table EFP, thus table FP can 
generate from EFP. According to the properties of FP-tree, FP-
tree can be presented by a table FP with three column 
attributes: item identifier (item), the number of transactions that 
contain this item in a sub- path (count), and item prefix sub-tree 
(path). The field path is beneficial not only to construct the 
table FP but also to find all frequent patterns from FP. In the 
construction of table FP, the field path is an important 
condition to judge if an item in frequent item table F should be 
insert into the table FP or update the table FP by incrementing 
the item's count by 1. If an item does not exist in the table FP or 
there exist the same items as this item in the table FP but their 
corresponding path are different, insert the item into table FP. 
In the process of constructing conditional pattern base for each 
frequent item, only need to derive its entire path in the table FP 
as a set of conditional paths, which co-occurs with it. 

III. COMPARISON OF VARIOUS FREQUENT PATTERN 

MINING TECHNIQUES 

Comparison of different FPM techniques is given in Table 
1, where A is length of maximal frequent item set and B is 
number of partitions. As Shown In the table, various algorithms 
are compared against four parameters, number of database 
scans required for the generation of frequent item set, the 
candidate generation technique used, whether the frequent item 
generation approach is incremental or not,   and how the 
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algorithm is sensitive to the change in user parameters.  
Apriori-based methods use efficient technique for pruning the 
candidate item sets, but they require lots of computational time 
as well as multiple database scans to generate candidate item 
sets. Partition-based methods limit the size of candidate item 
sets. Partition algorithm may generate a lot of false candidates 
from a small number of partitions. FP-Tree based methods 
require only two database scans in order to generate frequent 
patterns. These methods use a compact tree- structure to 
represent the entire database. They do not require candidate 
generation, reducing the computational cost. 

IV. COMPARISON OF APRIORI AND PRIMITIVE ASSOCIATION 

RULE MINING 

Comparison of the algorithms, Apriori and Primitive 
Association Rule Mining is given in this section. There are 
many advantages of Primitive Association Rule Mining over 
Apriori. 

Apriori uses candidate Generate function for generating 
every candidate k-item sets and it takes enormous amount of 
time to generate candidate k+1-item sets from large k item sets. 
However, Primitive Association Rule Mining does not use this 
function; instead it uses graph based approach after generating 
of large 2–item sets.  

In primitive association, a graph is constructed with large 
two item sets. Using graph, large three item sets can be 
generated easily without scanning the database. 

At each pass in primitive association, it is enough to use 
graph with k large item sets for generating k+1 candidate item 
sets. Traversal of one link list (adjacency list) takes less time as 
compared to Apriori generation function.  

Secondly in Apriori approach we are accessing transaction 
as a whole or we can divide into parts but it takes lot of 
memory whereas in Primitive Association Rule Mining, 

transactions are converted into bit vector which is based on 
items. Bit vector representation takes very less times as well as 
memory, theoretically 32 times less. Primitive Association 
Rule Mining takes less time since  transactions are represented 
in bit vector form, and we are using logical AND, OR  
operation which is very fast. Further the bit representation 
consumes less memory also. 

A. Comparison of AprioriTid and Apriori Hybrid 

AprioriTid and AprioriHybrid are just variations of Apriori. 
In Apriori, at every step, we have to find candidate k-item sets, 
and we have to scan whole database at each k, which is time 
consuming. So, AprioriTid algorithm has given a solution for 
finding candidate k-item sets without scanning whole 
transaction. This algorithm works on the basis of transaction Id 
that is associated with every transaction. Apriori Hybrid is 
combined approach of Apriori and Apriori Tid, in which if 
some part of transactions (which is stored in other place) do not 
fit into the memory then use Apriori algorithm, otherwise swap 
Apriori algorithm to Apriori Tid. 

In general, using Apriori AprioriTid and AprioriHybrid 
algorithms we can find frequent item sets, whereas we assume 
that items and transactions have equal weights. Sometimes, it is 
important to know that whether every items have equal weights 
or not, if all items have equal weights then Apriori and their 
variation can do good job for finding frequent item sets, and if 
weights of items are not equal, then Apriori and their variations 
do not work. So, to solve this problem, we have two solutions, 
whether we can assign weights to items and transactions, or to 
use some algorithms, so that it can give weights of items and 
weights of transactions. If we have weights of items in the 
beginning  in the database then we can find frequent item sets 
using weighted association rule of mining, otherwise we can 
use association rule of mining without pre-assign weights, 
which gives weights of items and weights of transactions using 
HITS algorithm. 

TABLE I.  COMPARISON OF VARIOUS FREQUENT PATTERN MINING

 Apriori-Based Partition 
Based 

Incremental 
Apriori 

FP Tree SQL Based 

Number of Database Scan   

For Best Case Scenario   

2 1 2 2 1 

Number of Database Scan   
For Worst Case   

A+1 (2B-1)/B A+1 2 1 

Candidate Generation Needed or Not Yes Yes Yes No No 

Incremental Mining Possible   No No Yes No No 

Sensitive to Change in User Parameter Yes Yes Yes Yes Yes 
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B. Experimental Results 

Following are real life datasets which were taken, these are: 

 Kosarak- The kosarak dataset comes from the click-
stream data of a Hungarian online news portal, Number of 
Instances =990,002, Number of Attributes= 41,270. 

TABLE II.  KOSARAK DATABASE 

 

Large Item Sets Time taken by 

Apriori 

Time taken by 

Primitive 

3 0.46 0.29 

4 2.166 1.86 

5 12.04 11.11 

Figure 1.  Kosark Database 

The results clearly show that Primitive algorithm is taking 
less time as compared to the apriori algorithm. 

Mushroom- This data set includes descriptions of 
hypothetical samples corresponding to 23 species of gilled 
mushrooms. Each species is identified as definitely edible, 
definitely poisonous, or of unknown edibility and not 
recommended. This latter class was combined with the 

poisonous one. The Guide clearly states that there is no simple 
rule for determining the edibility of a mushroom. Number of 
Instances = 8124, Number of Attributes = 22.  

TABLE III.  FOR MUSHROOM DATABASE 

Large Item Sets Time taken by 

Apriori 

Time taken by 

Primitive 

3 13.47 13.07 

4 13.65 13.35 

5 13.79 13.5 

 

Figure 2.  Mushroom Database 

Experimental result clearly shows that Apriori is taking 
more time. 

Chess - A game datasets. 

Attribute Information: Classes (2): -- White-can-win 
("won") and White-cannot-win ("nowin").  
It believes that White is deemed to be unable to win if the 
Black pawn can safely advance. Number of Instances= 3196, 
Number of Attributes=36. 



(IJACSA) International Journal of Advanced Computer Science and Applications,  
Special Issue on Artificial Intelligence 

 

146 | P a g e  
www.ijacsa.thesai.org 

 
 

TABLE IV.  FOR CHESS DATABASE 

Large Item Sets Time taken by 
Apriori 

Time taken by 
Primitive 

3 0.41 0.37 

4 4.64 4.04 

5 50.43 43.43 

Figure 3.  Chess Database 

By looking at the above results it is clear that FP- Tree 
based approach are showing a clear edge because the number 
of database scans required are less which in turn reduces the 
computational time. Because the database is represented in tree 
structures which are taking less space so the overall memory 
requirement reduces. 

CONCLUSION 

Frequent pattern mining is the first step for association rule 
mining. Association rule mining has found many applications 
other than market basket analysis, including applications in 
marketing, customer segmentation, medicine, e-commerce, 
classification, clustering, web mining, bioinformatics and 
finance. Various techniques have been found to mine frequent 
patterns.  

Each technique has its own pros and cons. Performance of 
particular technique depends on input data and available 
resources.  Among all of the techniques discussed above, FP- 

Tree based approach achieves better performance by requiring 
only two database scans hence reducing the computational 
time. It takes less memory by representing large database in 
compact tree-structure. But a word of caution here that 
association rules should not be used directly for prediction 
without further analysis or domain knowledge. They are, 
however, a helpful starting point for further exploration & 
understanding of data. Experimental results have shown 
advantages of Primitive Association Rule Mining over Apriori. 
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