
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1, Issue-2, May 2011

12



Abstract— Sorting is a process of rearranging a sequence of

objects into some kind of predefined linear order. String data

is very common and most occurring data type. Sorting a string

involves comparison it character by character which is more

time consuming than integer sorting. Also, sorting forms the

basis of many applications like data processing, databases,

pattern matching and searching etc. So implementing

improvements to make it fast and efficient will help in reducing

the computational time and thus making our applications run

faster. This paper briefs about various fast and efficient string

sorting algorithms. The algorithms have been divided into two

categories: cache-aware and cache-oblivious. The various

algorithms discussed are: CRadix Sort, Burstsort and cache-

oblivious string sorting algorithm. The improvement in CRadix

Sort is achieved by starting the sorting with the most

significant digit and associating a small block of main memory

called the key buffer to each key and sorting a portion of each

key into its corresponding key buffer. Burstsort is a trie-based

string sorting algorithm that distributes strings into small

buckets whose contents are then sorted in cache. The cache-

oblivious string sorting algorithm is a randomized algorithm

for string sorting which uses signature technique (reduces the

sequence by creating a set of “signatures” strings having the

same trie structure as the original set) to sort strings.

Index Terms—Cache-aware, Cache-oblivious, External

string sorting.

I. INTRODUCTION

 A string is a collection or finite sequence of characters or

alphabets. Sorting a string mainly consisting of characters

involve putting in a lexicographical or dictionary order.

String data type is predominant in many areas like

databases, pattern matching, etc. The traditional sorting

algorithms like merge sort, quick sort, insertion sort, etc

measure the complexity based on the number of

comparisons that are made. These known comparison based

algorithms reads the list elements and determines which of

two will occur first and which last but in case of string, each

character is sorted and the length is a major factor in

measure of complexity.

The string sorting takes time approximately proportional

to the length of the largest common prefix plus one, since

that many characters have to be compared to resolve the

comparison. The variable length string sorting is more

challenging than the fixed length integer sorting because

string sorting involves pointers to access the string, string

Manuscript received March 29, 2011.

Ritika Angrish, Department of Computer Science, Thapar University,
Patiala, India, (e-mail: rangrish@gamil.com).

Deepak Garg, Department of Computer Science, Thapar University,

Patiala, India, (e-mail: dgarg@thapar.edu).

comparison is done character by character unlike integer

sorting in which the entire key is compared at once and also

string lengths are variable and swapping them is more

difficult.

Now-a-days manipulation of large data sets is a common

thing in every area of application like databases, digital

libraries, etc. The size of data sets have increased to such an

extent that they now do not fit into the internal memory of

the computer systems thus they need to be stored in external

memory devices or secondary storages like CD, disks, etc.,

thus increasing the latency time as the external memories are

slower than the cache memory. If the problem set is very

large the latency time dominates the overall execution time

thereby increasing the computation time. The difference in

speeds of the memories is increasing rapidly with increasing

technology thus leading to increase in latency time i.e.,

increasing I/O bottleneck making the situation worse [12].

The performance of traditional string sorting algorithms

degrades when the problem set does not fit into internal

memory. This paper discusses various algorithms that aim at

minimizing the number of cache misses so that the I/O

bottleneck problem can be reduced thus making it more

efficient and fast..

II. LITERATURE REVIEW

There are two basic categories of sorting: Internal sorting

and External sorting. If the problem set is small enough to

reside entirely into the internal memory, then the sorting

done on the set is known as internal sorting. In this case the

transfer time i.e., the time required to read and write is

insignificant in evaluating the performance. External sorting

applies to large problem set which cannot entirely reside

into internal memory and they have to be accessed from

secondary storage thus adding latency time to computational

time and making it the major factor in determining the

performance.

Recent development in hardware technologies demand

programmers to pay attention to the memory hierarchy as

the performance impact of the memory system is increasing

dramatically. The introduction of cache memory helped in

improving latency but the penalty imposed by cache misses

have degraded the overall performance. So it can be implied

that a good overall performance cannot be achieved without

a good cache performance. As a consequence the design of

algorithms should be done in such a way that they take full

advantage of the cache memory [9]. This is entirely the duty

of the programmer to write the code which will generate less

number of cache misses.

Efficient String Sorting Algorithms:

Cache-aware and Cache-Oblivious

R. Angrish, D. Garg

Efficient String Sorting Algorithms: Cache-aware and Cache-Oblivious

13

A. Traditional Methodology

Fig. 1: Ternary search tree depicting the sorting order of Pin,

The, Cat, Rat, Dog, Fan, Fun, Pan, Van, Bus, Bat.

Traditionally the computational speed was measured on

the basis of comparisons. For string sorting pointers are used

and they are then permuted for putting the strings in the

required order. Examples include Multikey quicksort [5],

radix sort variants [7], [8], etc.

Multikey quicksort is a ternary partitioning algorithm, a

variant of quicksort, used for sorting problem having

multiple keys i.e., strings. It is explained that the data

structure used for this sorting is ternary search tree. Its basic

working is same as the quicksort, having the smaller

elements on left side and greater on right side. In this

algorithm the pivot key can be chosen at random or it can be

the first key or the median. After choosing the pivot, a first

loop starts at the beginning and compares the two keys if the

two are equal it shifts the key to left and halts if the key in

comparison is greater. The second loop which works from

the end and shifts the key which are equal to pivot and halts

when it finds smaller keys. Later the main loop swaps the

greater and lesser keys. The multikey quicksort on strings is

explained in fig 1 by making the ternary search tree by

inserting elements in input order.

A ternary search tree as shown in Fig. 1, for strings stores

single character per node and searching a string consists of a

character by character binary search for each character. The

only drawback in multikey quicksort is the selection of

pivot. If we consider median to be the pivot, finding median

is very expensive than doing sorting with random pivot.

B. Cache-Aware and Cache-Oblivious Algorithms

Earlier, the algorithm efficiency depended on the number

of instructions it incur. This model is called the RAM-

model where the memory access is said to be done in unit

cost regardless of the location of data. With advancing

technology, the memory access time depends on the level of

hierarchy we deal with. If this factor is not considered the

algorithms suffer a major drawback in their performance.

To handle this factor another model was introduced called

the external memory model or the I/O model [10; 11]. This

model takes into account the memory latencies. It

considered that the performance of an algorithm depends on

the number of disk access needed by the algorithm. The

main drawback of this model is that the algorithms

developed in this model are platform dependent i.e., they are

based on the knowledge of memory parameters; these are

called cache-aware algorithms.

The cache-oblivious algorithms [14] help to overcome

this drawback. The definition of cache-oblivious algorithm

as given by Prokop is ―An algorithm is said to be cache-

oblivious if it does not depend on the memory parameters

like cache line size and cache size‖. These algorithms are

platform independent: if implemented well in ideal cache

model then they can easily be implemented in other memory

models as well. The main aim of these algorithms is to

minimize the number of cache misses so that there is less

memory transfer operations thereby increasing the algorithm

performance.

III. CACHE-AWARE ALGORITHMS

A. CRadix Sort

CRadix sort [2] is a cache efficient variant of MSD

Radixsort with a little difference that instead of permuting

the strings directly using pointers, we use buffer to hold

some characters of strings and permute them. This is done to

alleviate the drawback caused in MSD Radixsort i.e., the

increase in cache misses. Considering MSD Radixsort, it is a

cache-oblivious algorithm since it was not developed

considering the memory hierarchy. In this the strings are

located sequentially and only pointers are swapped instead

of swapping the entire strings. So once the pointers are

permuted in first sort the strings cannot be accessed

sequentially during next sort this causing more cache

misses.

Thus to decrease the number of cache misses a part of

main memory is used as buffer which accommodate a part

of each string and temporary sorting is done on that. Thus

making CRadix sort a cache-aware algorithm. The buffer

used to manage the temporary sorting of keys is called key

buffer.

The working of CRadix sort is shown in Fig. 2.

Algorithm:

Consider the key buffer to be of size b, c be the number of

characters processed and i
th

 filling characters can be

computed as 1 + (i-1)b.

1. Set c=0 and i=1.

2. If buffers are empty or they are completely

processed i.e., c=b; set c=0, fill the buffer from

1+(i-1)b
th

 character with atmost b characters of the

corresponding key and increment i.

3. Increment c.

4. Keys are grouped according to its c
th

 character.

5. Permutation is done in the same order as of the key

pointers.

6. Algorithm is recursively applied to each group

from step 2 until each group contains single key.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1, Issue-2, May 2011

14

Fig. 2: Sorting of strings: pink, count, bed, pencil, note, cat,

nail and bull using key buffer of size 3.

Fig. 3: Implementation using method 2.

The next point of discussion is how to manage the

contents of the key buffer. The first method (shown in fig 2)

permutes all the untouched characters by finding their offset

or using c as the count of the character to be processed. The

second method (shown in fig 3) discards the processed

character thereby eliminating the task of finding the offset

and reduces the buffer size every time. Also while choosing

the key buffer size we need to balance the tradeoff between

performance loss by cache misses if b=1 and the

performance loss suffered due to overhead of permuting

large keys if b is very large.

B. Burstsort

Burstsort [1] is a trie based string sorting algorithm in

which the contents are divided into small buckets which are

later sorted in cache i.e. a combination of burst trie [3] and

string sorting algorithms [5; 7]. P-Burstsort is the standard

burstsort which proceeds in two stages: making a trie

structure of strings and then traversing it in-order and

sorting the bucket contents. The output is the pointers to the

string in lexicographic order.

A trie is a mutli-way tree structure useful for storing

strings over an alphabet. Tries store characters in internal

nodes and not keys, records in external nodes and use the

characters of the key to guide the search. A burst trie is a trie

with accessing nodes as internal nodes and buckets as

leaves.

The memory usage of buckets can be reduced by

redesigning the buckets or by having attached an array of

pointers to sub-buckets i.e., a moving field approach which

points to the field where key is to be inserted. To improve

the cache efficiency, string suffixes are first copied into a

small

Fig 4: Implementation of Burstsort using trie on strings: bat,

ball, wall and wallet.

buffer before a key is stored thereby decreasing the number

of cache misses.

Algorithm:

1. Insert the key into burst trie and distribute into

appropriate buckets according to the most

significant bit.

2. If bucket is full, introduce children buckets and

insert the keys in it; redistribute the keys according

to the next most significant bit.

3. Repeat step 1 and 2 until all the keys are inserted.

4. Traverse buckets in in-order fashion and sort the

keys using multikey quicksort.

IV. CACHE-OBLIVIOUS ALGORITHM

To best state the algorithm we assume the input to be

binary strings and the following notation [6].

K = number of strings to sort,

N = total number of words in the K strings,

M = number of words fitting in the main memory,

B = number of words per disk block,

where M<N and 1<B≤M/2. The input sequence assumed

x1,…., xk is given in a form such that it can be read in

O(N/B) I/Os.

A randomized algorithm [13] for string sorting in external

memory inspired by the randomized signature technique that

creates a set of ―signature‖ strings having the same trie

structure as the original set of strings is discussed here. For

K binary strings comprising N words in total, the algorithm

finds the sorted order and the longest common prefix

sequence of the strings using O(K/B log M/B(K/M) log(N/K

) + N/B) I/Os. It is a Monte Carlo type randomized, cache-

oblivious algorithm which computes the sorting permutation

and the lcp (least common prefix) sequence.

The data structure used in this is the unordered blind trie

which can be constructed from a blind trie by expanding

each single node. The algorithm proceeds by first making

the unordered blind trie i.e. the signature reduction for each

string and then applying the list ranking algorithm [4]. This

algorithm mainly concern with finding the lcp sequence for

strings and then using it for permuting the strings in sorted

order.

Efficient String Sorting Algorithms: Cache-aware and Cache-Oblivious

15

(a)

(b)

Fig5: (a) Blind trie for strings: bell, belt, wall, wand.

(b) Unordered blind trie for strings: bell, belt, wall, wand.

Algorithm:

1. Sort the nodes according to the longest common

prefix, which in this case is called parented and

further this parented is sorted according to the

branching characters.

2. Construct a directed graph joining the vertices of

the unordered blind trie.

i. For a node containing i children edges are

formed and annotated with the longest

common prefix.

ii. Leaf nodes are annotated with the number

of strings represented.

3. Order the graph using the list ranking algorithm.

4. Output the sorting permutation and the longest

common prefix.

V. CONCLUSION

CRadix sort may be a cache-efficient variant of MSD

Radixsort because of less number of cache misses but

requires extra memory for buffer. The large workspace

required can be of size of the number of pointers used for

representing strings or the extra buffer space reserved for

each key whichever is large. The Burstsort variants are

already the fastest hardware algorithm known and the

memory reduction improvements like reducing the size of

buckets which involves dynamic allocation have minimum

impact on the sorting time. The randomized sorting

algorithm performs well on cache-oblivious model and uses

the concept of longest common prefix i.e., signature

reduction and uses O (K/B logM/B (K/M) log (N/K) + N/B)

I/Os, where K is number of strings to sort, N is total number

of words in the K strings, M is total number of words fitting

in memory and B is number of words per block.

Table I: Comparison of algorithms

Algorithm

Parameters

CRadix Sort

Algorithm

Burstsort

Algorithm

Cache-

oblivious

randomized

algorithm

Algorithm

Type

Cache aware Cache

aware

Cache-

oblivious

Technique Modifies

MSD

Radixsort by

making it

cache

efficient.

Combines

burst trie

with string

sorting

algorithms.

Combines

signature

technique

with list

ranking

algorithm.

Basic

Principle

Uniquely

associating a

memory

block called

key buffer to

each key and

then the

contents of

key buffer are

permuted

Distributes

strings into

buckets

whose

contents

are then

sorted in

cache

Unordered

blind trie is

constructed

and the

permuted

using list

ranking

algorithm

Data

structure

Array Trie or

ordered

tree

structure

Unordered

blind trie

VI. REFERENCES

[1] R. SINHA and A. WIRTH, ―Engineering Burstsort:

Towards fast in-place string sorting‖, ACM Journal of

Experimental Algorithmics, Vol. 15, Article No. 2.5,

2010.

[2] W.H. Ng and K. Kakehi, ―Cache efficient radix sort for

string sorting‖, IEICE TRANS. FUNDAMENTALS,

Vol. E90–A, No. 2, 2007.

[3] S. Heinz, J. Zobel, and H.E. Williams, ―Burst tries: A

fast, efficient data structure for string keys‖, ACM

Trans. Inform. Syst, Vol. ,20, No. 2, 2002, pages192–

223.

[4] L. Arge, M. A. Bender, E. D. Demaine, B. Holland-

Minkley, and J. I. Munro, ―Cache-oblivious priority

queue and graph algorithm applications‖, In ACM,

editor, Proceedings of the 34th Annual ACM

Symposium on Theory of Computing (STOC ’02),

ACM Press, 2002, pages 268–276.

[5] J. Bentley and R. Sedgewick, ―Fast algorithms for

sorting and searching strings‖, In Proceedings of the

Annual ACM-SIAM Symposium on Discrete

Algorithms. Society for Industrial and Applied

Mathematics, Philadelphia, 1997, pages360–369.

[6] L. Arge, P. Ferragina, R. Grossi, and J. S. Vitter, ―On

sorting strings in external memory (extended abstract)‖,

In ACM, editor, Proceedings of the 29th Annual ACM

Symposium on Theory of Computing (STOC ’97) ,

ACM Press, 1997, pages 540–548.

[7] P.M. Mcilroy, K. Bostic, and M.D. Mcilroy,

―Engineering radix sort‖, Comput. Syst, Vol. 6, No. 1,

1993, pages5–27.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1, Issue-2, May 2011

16

[8] A. Andersson and S. Nilsson, ―Implementing

radixsort‖, ACM J. Exp. Algorithmics 3, 7, 1998.

[9] A. LaMarca and R.E. Ladner, ―The influence of caches

on the performance of sorting,‖ J. Algorithms, vol.31,

1999, pages66–104.

[10] A. Aggarwal and J.S. Vitter, ―The input/output

complexity of sorting and related problems‖,

Communications of the ACM, 31(9), 1988, pages1116-

1127.

[11] J. S. Vitter and E.A.M. Shrive, ―Algorithms for parallel

memory I: Two-level memories‖, Algoritmica 13, 1994,

pages110–147.

[12] Yale N. Patt, ―The I/O subsystem—a candidate for

improvement‖, Guest Editor’s Introduction in IEEE

Computer, 27(3) , 1994, pages15-16.

[13] R. Fagerberg, A. Pagh and R. Pagh, ―External string

sorting: Faster and cache-oblivious‖.

[14] M. Frigo, C. E. Leiserson, H. Prokop, AND S.

Ramachandran, ―Cache-oblivious algorithms (extended

abstract)‖, Proceedings of the 40th Annual Symposium

on Foundations of Computer Science, IEEE Computer

Society Press, 1999, pages 285–297.

Ritika Angrish is a master’s student of

Department of Computer Science,

Thapar University, Patiala and obtained

her B.E. Degree from Panjab University,

Chandigarh in 2008. Research interest:

algorithms and data structures.

Deepak Garg is an assistant professor

of the Department of Computer

Science, Thapar University, Patiala.

Chair, ACM North India SIGACT

Chapter; Senior member of IEEE,

USA; Secretary of IEEE Computer

Society, Delhi Section; Member of

ExeCom IEEE Delhi Section; and member of various other

national and international societies. Research interest: data

structure, Algorithms and Data Mining.

	I. INTRODUCTION
	II. Literature Review
	A. Traditional Methodology
	B. Cache-Aware and Cache-Oblivious Algorithms

	III. Cache-Aware Algorithms
	A. CRadix Sort

	IV. Cache-oblivious Algorithm
	V. Conclusion
	VI. References

