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Gene Finding Using Hidden Markov Model
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Abstract: The objective of this study is to perform mini review on Hidden Markov Models (HMMs) which is
recently important and popular among bioinformatics researchers and large no of software tools are based on
this techmque. The mathematical foundations of HMMSs shall be considered first in brief manner and then the
gene identification application. In the case of gene identification process, HMM basically resolve three basic
problems: First is the evaluation problem, in this it computes the probability that a particular HMM will
generates a given sequence of observations. Second is Decoding problem, in which it will uncover the most
likely hidden state and Third 1s Learming problerm, 1t 15 used to adjust the model parameter and train the HMM
to find an optimal model. Evaluation problem can be solved by using Forward and Backward algorithm,
Decoding problems are solved by using Viterbi algorithm and posterior decoding algorithm and then Learning
problems are solved through Viterb: training algorithm and Baum-Welch algorithm. Finally, some limitations of
the current approaches and future directions are also reported.
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INTRODUCTION

The wsually applied technique which is quite
prevailing too, is Markov Processes and Markov Chains
(De Fonzo et al., 2007, Nasiri, 2011). A Markov process is
a stochastic process satisfying a certain property, called
the Markov Property. A process satisfies the Markov
property if one can make predictions for the future of the
process based exclusively on its present state just as
well as one could express the process's full history
(Parent, 2004; Cawley and Pachter, 2003).

A Markov chain 1s a first-order Markov process for
which the probability distribution of a state at a given time
1s explicitly dependent only on the previous state and not
on all the others (Garg, 2007a; Lifshits et al., 2009). More
specifically there is a finite set of possible states and the
transitions among them are governed by a set of
conditional probabilities of the next state given the
present one, called transition probabilities (Garg, 2007b;
Kumar and Raghava, 2009). The transition probabilities
are implicitly (unless declared otherwise) independent of
the time and then one speaks of homogeneous, or
stationary, Markov chains. Tn case of DNA secuence; the
“time” means the position along the sequence (Yoon and
Vaidyanathan, 2004). Starting from a given wmtial state, the
consecutive transitions from a state to the next one
produce a time-evolution of the chain that is therefore
completely represented by a sequence of states that a
priori are to be considered random (Lunter, 2007,
Dosay-Akbulut, 2006).

A Hidden Markov Model consists of two stochastic
processes. The first stochastic process 1s a Markov chain
that is characterized by states and transition probabilities
(Ahmad, 2011; Tran et al., 2009). The states of the chain
are externally not visible, therefore “ludden”. Another
stochastic process will generate emissions which 1s
observable at every instant. Tt is dependent on state
probability distribution (Meyer and Durbin, 2002). In case
of Hidden Markov Model the term “hidden” not
indicates the parameter of the model, but it indicates the
state of the Markov Chain (El-Sayed and Khedr, 2007).

A Hidden Markov Model is a generalization of a
Markov chain, in which each (“internal™) state is not
directly observable (hence the term hidden) but produces
(“emits”) an observable random output (“external”) state,
also called “emission”, according to a given stationary
probability law (Oron ef al., 2008). In tlus case, the time
evolution of the mtemnal states can be induced only
through the sequence of the observed output states.

If the number of internal states is N, the transition
probability law 1s described by a matrix with N times N
values; 1if the number of emissions 1s M, the emission
probability law is described by a matrix with N times M
values. A model is considered defined once given these
two matrices and the imtial distibution of the
internal states. The study by Rabmer (Jing et al., 2006,
Frikha et al, 2007, Rabiner, 198%9) is widely well
appreciated for clarity in explaining HMMs. Tt is a
powerful class of model used m many fields including
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gene finding, profile searches, error correction coding,
multiple sequence alighment, speech recognition and
regulatory site identification.

BIOLOGICAL BACKGROUND

The central dogma of molecular biology pertans to
DNA, RNA and Proteins. DNA can be converted to RNA
by a process known as Transcription and RNA to
Proteins by a process known as Translation. DNA can be
represented by 4 characters, A, C, T and G. These are
called which are called nucleotides. The same characters
except for the nucleotide “T™ which 1s replaced by “U”
can represent RNA (Cheng and Zou, 2007, Kim, 2006;
Pop and Salzberg, 2008). In case of proteins, the
representation consists of 20 characters, corresponding
to 20 amino acids of which they are composed
(Sur, 2008). A one-to-one letter mapping occurs between
a DNA molecule and its associated RNA molecule
and a three-to-one letter mapping occurs between the
RNA  molecule and its associated protein molecule
(Nath and Bhattacharjee, 2011; Tran et af., 2008). The
coordinates are known in rare cases where a protein
sequence folds m a defined three dimensional structure.
The defined structure is what actually provides the
molecular function of the protein sequence.

Determining the DNA and RNA sequences are
relatively cheaper than determining protein sequences.
One of the most successful class of techmques for
analyzing biological sequences has been the use of HMM
(Larik and Scomro, 2003; Yang and Yang, 2008). HMM are
mainly used for predicting protein sequences since it
provides a good probabilistic framework for the same.
Considering the work done, there are mamly two everyday
tasks for bioinformatics: Deducing the protein DNA

Table 1: HMM Notations

U The set of all the N possible internal states
X The set of all the M possible external states
L The length of the sequence

k A time instant, wherek € [1,...L]

S Internal state at time k , where s, [ U

S =(8), 8 8, 5) A sequence of T. internal states

=% Emission at time k, where g, ¢ X

E=(e, 0565 €) A sequence of T. external states

Ay =P8, = V| 5,1=11) The probabilities of a transition from the state

u to the state v

A The WXN matrix of elements a,,,

by(x) =P(e, =x| s, =u) The probabilities of the emission x from the
state u

B The NXM matrix of elements b,(x)

T, = P(s; = u) The probability of the initial state u

II The N vector of elements IT,

A=A, B ID The definition of the HMM model

sequence and Comparing protein sequences to an existing
database of protein sequences, both of which utilize
Hidden Markov Models.

Mathematical basics and Elements of HMM: A Hidden
Markov Model is a finite learnable stochastic automate. It
can be summarized as a kind of double stochastic process
with the two following aspects: (a) the firstly stochastic
process is a finite set of states, where each of them is
generally associated with a multidimensional probability
distribution (Wang et al., 2008). The transitions between
the different states are statistically orgamzed by a set of
probabilities called transition probabilities. (b) Secondly,
stochastic process, in any state an event can be
observed. Since we will just analyze what we observe
without seeing at which states it occurred, the states are
"hidden" to the observer, therefore the name "Hidden
Markov Model".

Each Hidden Markov Model i1s defined by states,
state probabilities, transition probabilities, emission
probabilities and initial probabilities (Bhardwaj, 2007,
Lee ef al., 2008). For the sake of simplicity, in the
following notations we consider only one sequence of
internal states and one sequence
emissions. Table 1 shows the notations.

of associated

BASICS OF HMM IN STOCHASTIC MODELING

There are important aspects of modeling Hidden
Markov Models in order to solve real problems. The
following two steps are included n the stochastic
modeling of an HMM automate-first, to define the model
structure; and second, to define the leamning and
operating algorithm.

Definition of HMM architecture: The generalized
computational architecture of an operating HMM A, with
two integrated stochastic processes is shown in Fig. 1.

E:)Ll:] I:}ﬂ:l I:>l|:| |:>}"|:| n
U T T

Fig. 1. Generalized Architecture of an operating Hidden
Markov Model. In the above moedel, A 1s MM
variable, there are 2 different state variable in the
model, hidden state variable S, and observation
variable E,. In this above HMM, 4 different times
like t-2, t-1, t and t+1 are considered
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Each shape represents a random variable that can adopt
any of a number of values. The random variable S, 1s the
hidden state at time t. The random variable E, is the
observation at the time t The law of conditional
probability of the Hidden Markov variable S, at the time t,
knowing the values of the hidden variables at all times
depends only on the value of the ludden variable S, at
the time t-1. Every values before are not necessary
anymore, so that the Markov property as defined before
is satisfied. By the second stochastic process, the value
of the observed variable E, depends on the value of the
hidden variable S, also at the time t.

Definition of the learning and operating algorithms-
three basic problems of HMMs: The main types of
problems occurring n the use of Hidden Markov Models
are:

Evaluation problem: Compute the probability that a given
model generates a given sequence of observations. The
most used algorithms are: (a) the forward algorithm: find
the probability of emission distribution (given a model)
starting from the begmmng of the sequence. (b) the
backward algorithm: find the probability of emission
distribution (given a model) starting from the end of the
sequernce.

Decoding problem: Given a model and a sequence of
observations, induce the most likely hidden states. In
this stage we attempt to uncover the hidden part of
the model, 1e., to find the “correct” state sequence. More
specifically: (a) find the sequence of internal states that
has, as a whole, the highest probability. The most used
algorithm is the Viterbi algorithm. (b) find for each
position the intemal state that has the highest probability.
The most used algorithm is the posterior decoding
algorithm.

Learning problem: given a sequence of observations,
find an optimal model. The observation sequence
used to adjust the model parameters is called a
training sequence, because it 1s used to “train” the
HMMs. The training problem is very crucial for most
applications of HMMs. The most used algorithms start
from an imtial guessed model and iteratively adjust
the model parameters. More specifically: (a) find the
optimal model based on the most probable sequences
(as in problem Bl). The most used algorithm is the
Viterbi training (that uses recursively the Viterbi
algorithm m B1). (b) find the optimal model based on

the sequences of most probable internal states (as in
problem B2). The most used algonthm is the Baum-Welch
algorithm (that uses recursively the posterior decoding
algorithm m B2).

Gene finding: The term “gene finding” mdicates the
action of finding genes within a DNA sequence, but 1s
often used with a more general meaning of labeling
DNA tracts (Burge and Karlin, 1997), for example
labeling them as coding, intergenic, introns, etc. In this
last sense gene finding can be considered a special
case (the most important in bicinformatics) of the
more general action known as sequence labeling (also
for non-DNA sequences). Determiming the DNA and
RNA sequences are relatively cheaper than determining
protein sequences. One of the most successful class
of techniques for analyzing biclogical sequences has
been the use of HMM. HMM are mamly used for
predicting protein sequences since it provides a good
probabilistic framework for the same (Birney, 2001,
Nath and Bhattacharjee, 2011). Considering the work
done, there are mainly two everyday tasks for
bioinformatics: Deducing the protemm DNA sequence
and Comparing protein sequences to an existing
database of protein sequences, both of which utilize
Hidden Markov Models. In the early 1990s, Krogh et al.
(1994) introduced the use of HMMs for discriminating
coding and mtergenic regions m E. coli genome. The
program GeneMark (Borodovsky and Mclninch, 1993)
finds genes in E. coli DNA using a Markov model
for the coding region. It is a parser with a complex
intergenic model. The more complex HMM (Fig. 2),
intergenic model consists of several parts in addition
to the start and stop codon models. After generating
the stop codon, the model chooses either the
transition to the long intergenic HMM or the short
intergenic HMM, with appropriate probabilities. The
short intergemic HMM tends to generate mtergenic
regions of lengths from 1 to 14 or so, with statistics
determined from examples of such short mtergenic
regions in actual E. coli contigs. Similarly, the parameters
of the long intergemc model are adjusted to capture
the statistics of longer intergenic regions. The
of the two intergenic models
estimated from aset of known mtergenmic regions by
a learning procedure known as the forward-bacloward

param eters Wwere

algorithm. As a result of the training process, the long
intergenic region develops patterns, without having to
explicitly encode them. The complex parser has a better
accuracy.
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Fig. 2. HMM architecture for a parser for E. coli DNA with a complex intergenic model. The gene model above
the central state that contains the 61 triplet. In the DNA sequence A, T, G, C 1s the four codon characters. This
intergenic model consists of several parts in addition to the start and stop codon models. After generating the

stop codon, the model chooses either the transition to the long intergenic HMM or the short mtergenic HMM,
with appropriate probabilities. The short intergeme HMM tends to generate intergenic regions of lengths from

1 to 14 or so, parameters of the long intergenic model are adjusted to capture the statistics of longer intergenic

reglons

The gene model above the central state that contains
the 61 triplet. In the DNA sequence A, T, G, C is the four
codon characters. This intergenic model consists of
several parts m addition to the start and stop codon
models. After generating the stop codon, the model
chooses either the transition to the long mtergenic
HMM or the short intergenic HMM, with appropriate
probabilities. The short ntergemic HMM tends to
generate mtergenic regions of lengths from 1to14
or so, parameters of the long intergenic model are
adjusted to capture the statistics of longer intergenic
regions.

Many extensions to the original “pure” HMM
have been developed for gene finding. For example,
(1997) designed separate HMM
modules, each one appropriate for a specific region of
DNA. Separate HMM modules were designed and trained
for specific regions of DNA :exons, mntrons, mtergenic
regions and splice sites. In order to form a biologically

Henderson et al.

viable topology, the models were coupled Additionally,
the integrated HMM was tramed on a set of eukaryotic
DNA sequences and then tested by using an unknown
DNA sequences. Kulp et al. (1996)and Burge and Karlin
(199%8) used a Generalized HMM (GHMM or “hidden semi-
Markov Model™) that allows more than one emission for
each internal state.

A pair Hidden Markov Model (Durbin et al., 1998)is
having large no of sunilarty with standard HMM.

Basic difference 1s that it emits pairwise alignment,
where as standard HMM emits a single sequence. This
method provides parse only alignments between two
sequences but, with swtable enhancements, it is
sometimes applied to gene finding. For example,
Meyer and Durbin (2002) resented a new method that
predicts the gene structure starting from two homologous
DNA  sequences, identifying  the
subsequences. A useful open-source unplementation is
described by Majoros et al. (2005). Lukashin and
Borodovsky (1998) proposed a algorithm
(GeneMark hmm) that the gene finding
performance of the old GeneMark algorithm by means of
a suitable coupling with an HMM model. Pedersen and
Hein (2003) introduced an Evolutionary Hidden Marlov
Model (EHMM), based on a suitable couplng of an
HMM and a set of evolutionary models based on a

conserved

new
improves

phylogenetic tree.

We propose an oversimplified biological example
of an HMM, mspiwed by the toy example by
Eddy (2004) with only two mtemal states but with
exponential complexity. The model is detailed in Fig. 3.
The set of internal states 18 U = {*¢’.’n’} where' ¢'and’
n' stand for the coding and non-coding internal
states and the set of emissions 1s the set of the four DNA

bases:

X = {‘AB,UT,,,G,,,CB}
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0.5%

n 99%

Non coding

\ 4

A=10%
T=10%
C=40%
G =40%

(b)

ATTACGTTGACATTAGCAATATCATAGAACAAATAIATCGGGGCAGGATACCGCCGACCTGCAGGG
cececeececcececeeeeccececdeceeecccececeecinnnninnnnnnnnnnnnnnnnnnnnnnnnnn

(d)

Fig. 3: An example of HMM, (a) The circular boxes represent the internal states '¢', indicating the coding and 'n' non
coding or intron, inside the boxes there are the probabilities of each emission ('A','T", 'C' and 'G") for each state;
outside the boxes four arrows are labelled with the corresponding transition probability, (b) The 66 observed
emissions are representing a sample sequence and most likely, the sequences of internal states are given m the
second row, the dotted part 15 depicted m (c) and (d), (¢) The right-hand side column represents the boxed tract
of bases i (b), the other columns represent the two possible alternatives (for each squared base) for the internal
state ("¢’ or 'n') that emitted the base, each row refers to the same position along the sequence, the arrows represent
all possible transitions and the emissions, (d) The figure shows a likely sequence of choices between the
alternative mtermnal states producing its sequence 1n (b), such a sequence of choices of mternal state transitions

amounts to choosing a path in (c)

We are given a DNA sequence that beging in an exon,
containg one 5' splice site and ends in an intron. The
problem is to identify-where the 5' splice site (5'5S) is
located. Let’s imagine that exons have a uniform base
composition on average (25% each base), mtrons are A/T
rich (say, 40% each for A/T, 10% each for C/G) and the

5'8S  consensus nucleotide is almost always a G
(say, 95 G and 5% A).

Figure 4 illustrates the action, on the same tract of the
sequence in Fig. 3b, of the Viterbi algorithm used to
decode the whole sequence by means of the model
described in Fig. 3a.
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()

a=10.55
In(a)=-5.3
In (a.y) =-53.6

In (max) = -53.6
(v) = b.max
In (y)=-54.5

a=99%
In (a)=-0.01
In (ay) =-54.7

b=40%
In (b) =-0.92

Fig. 4 Tllustration of the action (in the same sequence) of the Viterbi algorithm used to decode the whole sequence by
means of the model described m Fig. 3 (&), more specifically, 4 (a) and 4 (b) illustrates the transition from Fig. 3 (c),
(d), (a) In each circular box, there is the value of the ¥ pointer, computed in the first phase, as illustrated in 4 (c),
specifically, “¥ = C” means that we discard the hypothesis of the transition from the previous state 'n’
(also indicated by dashing the corresponding incoming arrow), (b) In each circular box, the logarithmic value of
the probability v 1s shown, which 1s calculated and used in the first phase, dashed lines represent the transitions
discarded in the second phase, note that logarithms of the probabilities are used in order to avoid troubles
because of very small numbers, necessary for practical applications, (¢) A zoom of the marked zone in 4 (b), where
the computation of a recursion step of the Viterb: algorithm is done, 1s illustrated

CONCLUSIONS

Considering the present scenario of the HMM in
bioinformatics, from the time of its introduction and from
the wealth of available applications, it may be concluded
that the concept has reached a developed state. In
addition, since the beginning of the field, novel
applications have been fostered by so many different
extensions and modifications in respective techniques
thus producing models that can be considered even today
are still known as Hidden Markov Models.

The Hidden Markov Model can be used in various
machine learning techniques. Main advantages of HMMs
are-the ease of use, less training sets required and deeper
understanding of the phenomenon due to the observation
of the inner structure of the model. Various gene
prediction tools are available which are based on HMM.
The gene prediction tool Genscan can predict the gene

with accuracy of 80%. Several improvements have been
reported m HMM based gene prediction tools like VEIL
{(Viterbi Exon-Intron Locator), having overall accuracy of
92 %. The correlation ceefficient of VEIL, on which total
bases are correctly labeled, 15 0.73. To improve predictive
accuracy, hybrid models are frequently designed with the
combination of techmques like Support Vector Machine
and Artificial Neural Network.
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