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Abstract: Identification of coding sequence from genomic DNA sequence is the major step in pursuit of gene 

identification. In the eukaryotic organism, gene structure consists of promoter, intron, start codon, exons and stop codon, 

etc. and to identify it, accurate labeling of the mentioned segments is necessary. Splice site is the ‘separation’ between 

exons and introns, the predicted accuracy of which is lower than 90% (in general) though the sequences adjacent to the 

splice sites have a high conservation. As the accuracy of splice site recognition has not yet been satisfactory (adequate), 

therefore, much attention has been paid to improve the prediction accuracy and improvement in the algorithms used is 

very essential element. In this manuscript, Hidden Markov Model (HMM) based splice sites predictor is developed and 

trained using Modified Expectation Maximization (MEM) algorithm. A 12 fold cross validation technique is also applied 

to check the reproducibility of the results obtained and to further increase the prediction accuracy. The proposed system 

can able to achieve the accuracy of 98% of true donor site and 93% for true acceptor site in the standard DNA (nucleotide) 

sequence. 

Keywords: Algorithms, coding sequence, cross validation, gene finding, hidden markov model, modified expectation 
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1. INTRODUCTION 

 A genomic sequence is a string composed of four 
different nucleotides, A, T, G and C, which codifies in group 
of three, called codons that are amino acids that form the 
proteins and are necessary for all organisms to live. A very 
large number of computational solutions for the gene 
identification problem have been reported which are the 
valuable resources for the human genome program and for 
the molecular biology community. A gene is a structure that 
codifies the proteins [1, 2]. In prokaryotes, it is a sequence of 
codons between a start codon (ATG) and a stop codon 
(TAA, TAG or TGA) whereas in eukaryotes, the structure is 
more complex. The coding sequence is usually broken by 
non-coding sequences, called introns that are removed 
during the transcription in a process called splicing [3]. The 
coding sections are called exons. In this manner, the 
eukaryotic gene begins with first exon, then any number of 
intron/exon pairs, and ends with a last exon which finishes 
with a stop codon. This is called an open reading frame 
(ORF). The eukaryotic genes are composed by a single exon. 
The boundary between an exon and an intron is called a 
splice donor site and that between an intron and an exon, a 
splice acceptor site. The actual gene has the sequences of 
nucleotides before start codon and after stop codon, known 
as the untranslated terminal regions (UTRs). However, it is 
not uncommon in gene recognition to use the term “gene” 
when referring only to the coding part of it, since that part 
only determines the protein structure [4]. 
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 Gene recognition, gene structure prediction or gene 
finding, all of these three terms consists of determining those 
parts of a sequence which are coding and constructing the 
whole gene from its start site to its stop codon. Here, we are 
concerned with the work related to eukaryotic gene 
recognition, as it is significant, useful and complex as well. 
There are two basic approaches to predict the gene structure 
[5]; first one is homology based approaches that search for 
similar sequences in databases of known genes and are 
usually called extrinsic methods. The growing number of 
sequenced genomes and known genes is increasing the 
potential of homology based methods. However, it is clear 
that only genes that are somewhat similar to known genes 
can be identified in this way. Furthermore, when using 
homology based techniques, it is very difficult to establish 
the complete structure of the gene, as the exact bounds of the 
exons are not easy to determine with certainty. The second 
approach, usually known as intrinsic approach includes two 
basic methods: ab initio and de novo [6]. Both are based on 
obtaining the features that characterize a coding region 
and/or the functional sites, and using them to find the correct 
structure of the unknown genes. Ab initio methods use only 
the information of the genome to be annotated (the target 
genome), whereas de novo methods add information of one 
or more related genomes (the informant genomes). 

 The main function of eukaryotic gene structure predictors 
is to pin point the locations of all start codons, stop codons, 
exons and introns in every gene and this step is considered as 
the rate-limiting step in the gene identification. In predicting 
splice site (which is the separation between exon and intron), 
the initial task is finding exons and introns. Splice site 
junction identification means the identification of donor site 
(5’ boundary containing dinucleotide GT) and acceptor site 
(3’ boundary containing dinucleotide AG) of introns [7-10]. 
The success in gene prediction largely depend on the 
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accuracy in finding the splice site junction, and thus, the 
removal of the introns from the DNA sequence to get coding 
regions is possible [7]. Bioinformatics unite the capability 
and knowledge of researcher from computational and 
biological areas, and locate a familiar stage for people from 
these backgrounds to work collectively to decipher gene 
annotation challenges [11]. Splice site in eukaryotic DNA 
sequence is shown in Fig. (1). 

 Although methods to predict potential protein coding 
regions on genomic DNA sequences came into existence 
since 1980s, the first program to assemble potential DNA 
coding regions into translatable mRNA sequences were not 
available until the early 1990s [8]. From the recent past, 
there are several programs available for biology scientists. 
GRAIL is the one amongst them, which is widely used today 
and is available on the BLAST web site for gene structure 
detection (BLAST: http://www.ncbi.nlm.nih.gov) [8, 9]. 

 Hidden Markov Models (HMM) have been applied 
successfully in various applications, viz. speech recognitions 
[10]. An HMM model is a type of process in which some of 
the details are unknown or hidden and is stochastic in nature. 
This process uses a number of states and probabilistic state 
transitions and is usually represented by a graph in which 
transitions are represented by edges and states by vertices. 
Individual states are denoted by Y, which are associated with 
a discrete output probability distribution, P(Y). Transition 
probability is the probability of going from a certain state to 
the next state. Thus, the sum of the probabilities of all the 
transitions from a given states s to all other states must be 1. 
Markov and HMMs are gaining popularity in bioinformatics 
research for nucleotide sequence analysis [12-16]. For 
prokaryotes gene identification, Borodovsky et al. [17] 
effectively applied this HMM technique. Eukaryotic 
promoter detection algorithm using a Markov transition 
matrix was proposed by Audic and Claverie [18]. A new 
technique VEIL (Viterbi Exon-Intron Locator) was 
developed by Salzberg [19] and Henderson et al. [20] to 
identify translational start site and splice sites in eukaryotic 
mRNA. The HMM based gene predictor GeneScout was 
developed by Yin et al. [21], to detect translational start site 
and mRNA splicing junction sites. Our proposed technique 
used in this manuscript differs from Salzberg’s and others, in 
which two different HMM are used; one for 5’ and another 
for 3’splice sites. Every model consists of two elements; one 
for false sites and another for true sites. 

2. RESOURCES AND METHODOLOGY 

2.1. Dataset Collection 

 To build reliable expanded Hidden Markov Model for the 
detection of human splice sites, high-quality datasets must be 
used. Splice site dataset is collected from the website 
http://www.fruitfly.org/sequence/human-datasets.html. There 
is a collection of 2381 true donor sites and 2381 true 
acceptor sites from a set of 462 annotated multiple-exon 
human genes. After removing junk sequence (splice sites 
that contained base positions not labeled with A, T, C, G but 
with other symbols) there remained 2379 true donor sites 
and 2379 true acceptor sites, which were used as the true 
dataset. Hence, every acceptor site has a conserved AG di-
nucleotides and every donor site has a conserved GT di-
nucleotides. We also collected a large database of 300,062 
false donor sites and 400,314 false acceptor sites from the 
462 annotated genes and used it as the ‘false dataset’. 

 Afterwards, we used a 12-fold cross-validation in our 
dataset to estimate the splice site detection accuracy of all 
the models. Cross validation is a standard experimental 
technique in which each model is verified by randomly 
partitioning the data into several subsets [21, 22]. We tested 
each subset (testing data) with the parameters trained by the 
other twelve subsets (training data) under the splice site 
model. After completing all these operations we took the 
average of the twelve predictive accuracy measures 
corresponding to the 12 testing/training data pair. Our 
proposed HMM system is trained with sequences which 
contains 2179 true site and 275,055 false sites, tested with 
200 true sites and 25,005 false sites, for every time in the 
cross validation testing. 

2.2. Proposed Models 

 In our proposed models for the identification of acceptor 
and donor splice sites, the splice site classification problem 
is subdivided into two – acceptor splice site classification 
and donor splice site classification. Two different models are 
constructed for the identification of acceptor splice sites and 
donor splice sites respectively. 

2.3. Notations 

 For simplicity, we are providing some basic notations 
which are shown in the Table 1. 

 

 

 

 

 

 

 

 

 

Fig. (1). The splice sites (Donor site and Acceptor site) in eukaryotic DNA sequence. 
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2.4. Donor Site Hidden Markov Model (HMM) for 5’ 

Splice Site 

 The nucleotide sequences must pass through this model 
to move from exon model to intron model. 11 nucleotide 
bases with GT are included in the conserved sequences 
which are almost consistent to all the donor sites [2, 23]-
[24], an example of which is shown below: 

 

ATGACGTGACC 

 The di-nucleotides GT are located in position 6 and 7 
respectively. The exon-intron boundary occurs between 
stages 5 and 6, 1-3 is a start codon and so 4-5 are the part of 
exon and 6-11 are the part of intron. The location of G and T 
is 6 and 7 respectively in all the true 5’ splice sites [25]. 
There is an 11-base non-donor sequence also present in 
which the G and T are located at position 6 and 7 

Table 1. Some Basic Notations Related to Acceptor, Donor Hidden Markov Model and Splice Site 

 

Symbol Description 

X Base in Hidden Markov Model 

Y Various states in the Hidden Markov model 

T Various transitions in the Hidden Markov model 

P(Y) Discrete state probability 

P(T) Transition probability 

Csite A candidate sequence 

THV Predefined threshold value 

F Flag variable 

L Length of the candidate site 

MODt True Acceptor HMM Unit 

MODf False Acceptor HMM Unit 

N The set of sequences that are randomly picked from the positive training data set and negative training data set. 

Nt 
The sequence collection containing the remaining sequences in the positive training data set, after taking some positive 
training dataset for M. 

Nf 
Represent the remaining sequences in the negative (non-coding) training data set, after picking some negative training data 
set for M. 

P Subset of sequence collection N 

MEM Modified Expectation Maximization (E-M) algorithm. 

Lb The positive lower bound 

Sn
mem  The sensitivity during the MEM training. 

Sp
mem

 The specificity during the MEM training. 

Stotal Stotal represent the total number of states in the Acceptor Model. 

bi bi A,  G,  C,  T{ }( )  Base at state i, 1 i  Stotal. 

tri bi ,  bi+1( ),  1 i Stotal 1  The transition from state i to state i+1. 

Tin
(t )  Total number of true acceptor sites that have been input into True Acceptor HMM Unit 

Tin
( f )  Total number of false acceptor sites that have been input into False Acceptor Unit. 

FLAGHMMi A flag indicating whether Csite is a true acceptor site or not. 

Sn
true  Sensitivity or TPR of the HMM. 

Sn
false  Specificity of the HMM. 

ACC  Accuracy of the Hidden Markov Model. 

f tri
(t ) (bi ,bi+1)  State transition probabilities in True Acceptor HMM/True Donor HMM Unit. 

f tri
( f ) (bi ,bi+1)  State transition probabilities in False Acceptor HMM/False Donor HMM Unit. 
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respectively as a “false donor site”. The motive of our 
proposed algorithm is to identify whether the given sequence 
(candidate) is a true donor site or a false donor site. 

 In our proposed donor HMM for identifying true donor 

site, 11 states and a set of transitions is used, which is 

represented as a digraph where vertices depicts the states and 

edges depicts the transitions. At each state, the model 

generates a base ‘X’ in {A, G, C, T} accordance with the 

state and transition probabilities, with the exception of states 

6 and 7. At the state 6, the donor HMM consistently 

generates base X = G , and at state 7, X = T . Every state Y 

is coupled with an output probability distribution, P(Y). We 

can simply observe that the value of P(Y) is 1 for states 6 

and 7. The transition probability of HMM to make a 

transition is denoted as P(T). At state 5, every base has a 

constant transition, P T( ) = 1 , to the base G at state 6. 

Similarly, at state 6, the base G has a constant transition, 

P T( ) = 1 , to the base T at state 7. The donor site HMM for 

5’ splice site is shown in Fig. (2). 

2.5. Acceptor Site Hidden Markov Model (HMM) for 3’ 

Splice Site 

 In DNA, the acceptor sites are the preserved boundary 
sequences at 3' splice sites which include 17 nucleotide bases 
with AG almost consistent to all acceptor sites [2, 26, 27], 
for example, 

CTATCCTTCTCACAGGG 

 In an acceptor site, nucleotide A and G are located at 
positions 12 and 13 respectively [28]. There is also a non-

acceptor sequence, in which the location of A and G are 12 
and 13, which are considered as false acceptor site. 
Therefore, the proposed algorithm attempts to identify 
whether the given sequence is true donor site or false donor 
site. The acceptor HMM for 3’ splice site is used to express 
the basic properties of true acceptor sites. 

 In our proposed donor HMM for identifying true 

acceptor site, 17 states and a set of transitions is used, which 

is represented as a digram where vertices depicts the states 

and edges depicts the transitions. In a nucleotide sequence, 

states 1 to 13 belong to an intron and state 14-17 belong to 

an exon. At each state, the model generates a base ‘X’ in {A, 

G, C, T} accordance with the state and transition 

probabilities, with the exception of states 12 and 13. At the 

state 12, the acceptor HMM consistently generates base 

X = A , and at state 13, X = G . Every state Y is coupled 

with an output probability distribution, P(Y). We can simply 

observe that the value of P(Y) is 1 for states 12 and 13. The 

transition probability of HMM to make a transition is 

denoted as P(T). At state 11, every base has a constant 

transition, P T( ) = 1 , to the base A at state 12. Similarly, at 

state 12, the base G has a constant transition, P T( ) = 1 , to 

the base G at state 13. The acceptor site HMM for 3’ splice 

site is shown in Fig. (3). 

2.6. Unit Creation for Each Model 

 The number of false splice sites present is much larger 

than the number of true splice sites in vertebrate DNA 

sequence. To identify their difference, for Donor HMM 

System, we have created two programs – True Donor HMM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The Donor site HMM for 5’ splice site. 
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Unit and False Donor HMM Unit. Similarly, for Acceptor 

HMM System, another two programs – True Acceptor HMM 

Unit and False Acceptor HMM Unit are created. The True 

splice site HMM Unit is the integration of True Donor HMM 

Unit and True Acceptor HMM Unit; and in a similar manner, 

False Splice site HMM Unit is the combination of False 

Donor HMM Unit and False Acceptor HMM Unit. Here, we 

assume that Csite represents the given DNA sequence, and 

MODt and MODf denotes True splice site HMM 

element/Unit and false splice site HMM Unit respectively. 

For splice site predication, true site and false units are used 

to classify the given sequence into appropriate categories. 

We assume that the probability of donor site is 

P(X = 1 | Csite , MODt )  when the given sequence is processed 

by True Donor HMM unit and the probability of the non-

donor site as P(X = 0 | Csite , MODf )  when it is processed by 

False Donor HMM Unit. The training data for true and false 

splice sites are used to give training to the true splice site 

HMM Unit and false splice site HMM Unit respectively. To 

calculate the result of Csite, initially we run True Donor 

HMM Unit to obtain the probability of being a donor site 

sequence and then, False Donor HMM Unit to obtain the 

probability of non-donor sequence. After comparing these 

values, our given Csite is assigned to false donor category or 

true donor category. Figs. (4, 5) shows the creations of True 

Splice site HMM unit and False Splice site HMM unit. 

 

 

 

 

 

 

 

 

 

Fig. (4). The True Splice site HMM Unit. 

 

 

 

 

 

 

 

 

Fig. (5). The False Splice site HMM Unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The Acceptor HMM for 3’ splice site. 
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 To train these HMM Units, we used modified expectation 

maximization (MEM) algorithm. In the basic EM algorithm,  

 

a set of unaligned sequence and a motif length are provided 

as input resulting in a probabilistic model for motif [29-32]. 

Also, each iteration consist of two steps namely expectation 

step (E-step) and the maximization step (M-step). But, many 

of pre-trained values, such as those in splice junction 

models, are fixed and can not be modified by the EM 

algorithm, whereas, as our dataset contains splicing junction 

sites of same length which may be aligned to each other, 

therefore, we developed the proposed MEM algorithm for 

training a HMM with fixed topology. In this MEM 

algorithm, we trained the module iteratively to get the 

maximum value of specificity, i.e. the fraction of correctly 

classified sites or until positive training data set, N
t 

and 

negative training data set N
f
 become empty with the 

condition that he value of sensitivity, Sn
mem

 during the 

training period remains constant. 

 Assuming that all these sequences may be aligned to 
each-other; our designed Modified EM (MEM) algorithm 
works in the following manner: Initially, the value of all the 
transition probabilities P(T) and state probabilities P(Y) are 
set to 0 and the HMM Unit topology is constant. Then the 
first subset of positive training data (e.g. 120 sequences) is 
given as input to the True Donor HMM Unit; the numbers of 
the individual bases at each state and from present state to 
the next are recorded. Afterwards, the prior probabilities for 
all the states and transitions are calculated in the True Donor 
HMM Unit. After getting the prior probabilities, we provided 
another subset of positive training data to the True Donor 
Unit, and all the subsequent probabilities are re-adjusted. 
After this, we calculated the differences, diff, for all the 
probabilities between the earlier and subsequent 
probabilities. If some of the diff are larger than a predefined 
threshold value (THV), set the current posterior probabilities 
as the new prior probabilities, and the new data set is then 
run through the True Donor HMM Module again to further 
refine the probabilities. This training process is repeated 
until the changes in all probabilities in the True Donor HMM 
Unit are smaller than the THV. The False Donor HMM Unit 
is trained using the negative training data in the same way as 
for the True Donor HMM Unit. 

2.7. Algorithms 

 Three efficient algorithms – Forward, Viterbi and 
Expectation Maximization (EM) are used for HMM 
computation. The proposed algorithms can be used mutually 
for the Donor HMM System and Acceptor HMM System. 
Initially, Acceptor HMM System and its related units are 
created, and then, the True Acceptor HMM Unit and False 
Acceptor HMM Unit are formed accordingly. The 
algorithms for the Donor HMM System are developed in the 
similar manner. 

2.8. Training Algorithm 

 In the training algorithm, N represents the set of 
sequences which are arbitrarily selected from the positive 

and negatively training data sets, contains about 200 true 
acceptor sites and 19,000 false acceptor sites. Each sequence 
in N is labeled as N

t
 if it is taken from positive training data 

set and N
f
 if from the negative training data set and, P is the 

subset of N. The sum of sequences in N
t
 and N

f
 exceeds 

about twelve times the number of sequences in N. 

 The algorithm converges in the training phase by 

advancing iteratively. A few sequences from N
t
 and N

f
 are 

removed by the algorithm at each iteration, and inputs those 

into True Acceptor HMM Unit and False Acceptor HMM 

Unit. Then, the algorithm determines the sequences those are 

located in the subset P . During the MEM training, let Sn
mem

 

represents the sensitivity, which is the ratio between the 

number of true acceptor sites in P  and the total number of 

true acceptor sites in N; and Sp
mem

 represents the specificity, 

which is the ratio between the number of true acceptor sites 

in P and the total number of sequences in P. Here, it is 

important to note that P  (belongs to) N and the goal of 

the MEM training is to train the Units repeatedly to get a 

maximal value of Sp
mem

 until
 
N

t
 and N

f
 is emptied, provided 

Sn
mem

 remains constant. Here we have taken the value of 

Sn
mem

= 0.92 for the purpose. 

 Specifically, Stotal represents the total number of states in 

the Acceptor Model and bi bi  A,  G,  C,  T{ }( )  be the base 

at state i, 1 i Stotal . and tri  bi ,  bi+1( ),  1 i Stotal 1  be 

the transition from state i to state i +1 . The topology for the 

Acceptor HMM System is fixed, and all of the transition 

probabilities and state probabilities are initialized to random 

values. Then we selected one twelfth of the sequences from
 

N
t
 and provided as input into the True Acceptor HMM Unit. 

At the same time, one twelfth of the sequences from N
f
 are 

selected and these are fed as input into False Acceptor HMM 

Unit. The number of the individual bases bi and the number 

of individual transitions from one state to the next state, 

tri  bi ,  bi+1( )  are recorded at each state. Then we calculated 

the post probabilities for all the states and transitions in True 

Acceptor HMM Unit and finally, the False Acceptor HMM 

Units are computed. Considering T t( )tri  bi ,  bi+1( )  as the total 

number of transitions from a base bi at state i to a base bi+1  at 

state i +1  in True Acceptor HMM Unit and, Tin
(t )

 be the total 

number of true acceptor sites that have been input into True 

Acceptor HMM Unit, the state transition 

probabilities, f tri
(t ) (bi ,bi+1 ) , in True Acceptor HMM Unit 

can be calculated from the following equation: 

f tri
(t ) (bi ,bi+1 )  = 

T (t )tri (bi ,bi+1 )

Tin
(t ) . (1) 

 Similarly, if T ( f ) tri (bi ,bi+1 )  is the total number of 

transitions from a base bi (at state i) to a base bi+1  (at state 

i +1 ) in False Acceptor HMM Unit and Tin
( f )

 is the total 

number of false acceptor sites that have been input into False 

Acceptor Unit, then, the state transition probabilities, 
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f tri
( f ) (bi ,bi+1 )  in False Acceptor Unit can be calculated 

from the following equation: 

f tri
( f ) (bi ,bi+1 )  = 

T ( f )tri (bi ,bi+1 )

Tin
( f )  (2) 

 Subsequently, all sequences contained in N, which are 

unlabeled, are considered as input to the True Acceptor and 

False Acceptor HMM Units. Let P True |  Y ,  N t( )( )  

represents the probability of a sequence Y (acceptor 

sequence) in set N and P True |  Y ,  N f( )( ) , the probability of 

Y (non-acceptor sequence). In order to calculate 

P True |  Y ,  N t( )( ) , the probability of sequence Y must be 

known by using True Acceptor HMM Unit, which can be 

computed as follows: 

p(Y |True,N (t ) ) = ftri
(t )

i=1

Tstates 1

(bi ,bi+1 ),  bi A,  G,  C,  T{ } . (3) 

 The proposed MEM algorithm uses Bayesian Theorem 

(See eq. S1 in supplementary data) for calculating 

P True |  Y ,  N t( )( )  from P Y |  True, N f( )( ) , 

P(True |Y ,N (t ) ) =
P(Y |True,N (t ) )P(True)

P(Y )
 (4) 

where P True( ) =  prior probability (assumed to be a 

constant), P Y( ) =  product of the individual base 

probabilities in the sequences (See eq. S2 and S3). 

 Similarly, equations can be derived for calculating 

P False |  Y ,  N f( )( )  as follows: 

P(Y | False,N ( f ) ) = ftri
( f ) (bi ,bi+1 ),

i=1

Tstrates 1

 bi A,  G,  C,  T{ } , (5) 

P(False |Y ,N ( f ) ) =
P(Y | False,N ( f ) )P(False)

P(Y )
 (6) 

 Assuming the probability ratio of sequence Y in the 
dataset N is represented by pr 

pr =
P(True |Y ,N (t ) )

P(False |Y ,N ( f ) )
.  (7) 

 Once the pr is calculated for each sequence in set N, then 

the sequences in set N is sorted in the descending order 

according to their respective pr values. If the total number of 

positive sequences in set N is Spt, we select the pr value for 

Spt *Sn
mem th

 positive sequence and use that value as the 

positive lower bound, denoted by Lb. The sensitivity Sn
mem

 of 

200 positive sequences in set N is 0.92, so Lb is the pr value 

of the 184
th

 positive sequence. A sequence Y  N into set P 

is assigned by the MEM algorithm if the pr value for Y Lb . 

Let T(P+N) be the number of positive sequences in set N that 

are assigned into set P. Then, sensitivity during the MEM 

training will be given by 

Sn
mem

=
T(TP )
T(P+N )

. (8) 

and, let T(pp) be the total number of sequences in N that are 
assigned into P. Then, by definition, specificity during the 
MEM training will be given by 

SP
mem

=
T(TP )
T(PP )

. (9) 

 To increase Sp
mem

, the entire probabilities are adjusted in the 

re-estimation procedure hidden in the Donor Model Acceptor 

System and the new sequences in N
t
 and N

f
 are chosen and 

removed. These sequences are then run through True Acceptor 

HMM Unit and False Acceptor HMM Unit again and the 

probabilities are further refined. This process is repeated until 

the value of Sp
mem

 is maximized or the value of N
t
 and N

f
 

become zero. Now, the positive lower bound Lb that maximizes 

Sp
mem

 will be considered as output and used in the detection 

phase for splicing junction sites. In the training period, MEM 

algorithm is used, which is depicted in Pseudocode 1. 

Input 

Untrained HMM site unit (including a true site unit and a false site 

unit); 

Positive training data set, Nt; 

Negative training data set, Nf; 

MEM testing data set, N; 

OUTPUT: 

Fully trained HMM site unit and Lb; 

ALGORITHM: 

max:= false ; 

do begin 

max := true ; 

if Nt is not empty then begin 

remove one twelfth of the sequences from Nt and input 

them into the true site unit; 

for i = 1  to Stotal 1  

calculate ftri
t (bi ,bi+1)  as in Equation (1); 

end; 

if Nf is not empty then begin 

remove one twelfth of the sequences from Nf and input 

them into the false site module; 

for i = 1  to Stotal 1  

calculate ftri
f (bi ,bi+1) as in Equation (2); 

end; 

for each sequence Y N do begin 

calculate P True |  Y ,  N t( )( )  as in Equation (4); 

calculate P False |  Y ,  N f( )( ) as in Equation (6); 

calculate pr as in Equation (7); 

end; 

select Lb ; 

calculate Sp
mem

 according to Lb ; 

if ( Sp
mem

 is not maximum) or (either Nt or Nf is non-empty) 

then 

max := false ; 

end; 

while max 

Pseudocode 1. The MEM Algorithm in training phase. 
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2.9. Splice Site Junction Detection Algorithm 

 The implication of a candidate acceptor site is a 17-base 

sequence section with the bases A and G at locations 12 and 

13 respectively [2]. A section Csite, of 17-bases (referred as 

b1,  b2 ,...,  b17  respectively) is taken as the input of the site 

detection algorithm, which is extracted from a genomic 

DNA sequence Y. The indication whether the Csite starting at 

position i of the genomic DNA sequence Y is a true acceptor 

site or not is estimated/verified by the output of the site 

detection algorithm, which is a flag given by FLAGHMMi. 

 Now, considering that f trj
(t ) (bj ,bj+1 )  be the probability 

of a transition from base bj to base bj+1 (1 j 16 ), of Csite 

using True Acceptor HMM Unit, a flag variable F may be 

defined as 1 if Csite belongs to a true site category, otherwise, 

it will be 0. Let L be the length of the candidate site Csite (L 

is 17 for acceptor sites and 11 for donor sites) and 

P Csite  |  F=1,  N t( )( )  be the probability of the candidate site 

Csite with the condition that it is an acceptor site processed by 

True Acceptor HMM Unit, then 

P(Csite | F = 1,N (t ) ) = ftrj
(t ) (bj ,bj+1 ),

j=1

n 1

  bi A,  G,  C,  T{ }  (10) 

 Therefore, according to Bayesian theorem, 

P(F = 1 |Csite ,N
(t ) ) =

P(Csite | F = 1,N (t ) )P(F = 1)

P(Csite )
.  (11) 

 P F = 1( )  can be treated as a constant [3] while 

examining a set of sequences to detect true acceptor sites. 

Then, P Csite( ) , the product of the individual base 

probabilities for b1,  b2 ,...,  bn  will be 

P(Csite ) = P(bj | F = 1,N (t ) ),
j=1

n

  bi A,  G,  C,  T{ } . (12) 

 In the same way as we’ve followed for True Acceptor 
HMM Unit, the False Acceptor HMM Unit can be calculated 
by eq. S4, S5, and S6 with flag variable, F = 0 and N

(t)
 

replaced by N
ft)

. 

 Now, provided the candidate acceptor site Csite starting at 

position i in the DNA sequence Y is given, the proposed 

algorithm will find the two most likely sets of states through 

the two HMM Units for Csite. Then, the algorithm will 

calculate P F = 1 |  Csite , N
t( )( )  and P F = 0 |  Csite , N

f( )( ) . 

Based on the scoring function, a score sr is assigned to the 

candidate site, as shown below: 

sr =
P(F = 1 |Csite ,N

(t ) )

P(F = 0 |Csite ,N
( f ) )
.  (13) 

 After evaluating sr and Lb, a flag FLAGHMMi, is 

assigned to the candidate site Csite and calculated. If sr Lb , 

the value of FLAGHMMi will be 1 and the Csite is considered 

as true acceptor site, and if it is 0, then it is considered as a 

false acceptor site. The Acceptor Splice site junction 

classification algorithm is given in Pseudocode 2. 

Input 

A candidate acceptor site Csite of an unlabelled genomic DNA sequence 

starting at position i 

Output 

/* FLAGHMMi is a flag indicating whether Csite is a true acceptor site 

or not. */ 

FLAGHMMi ; 

Algorithm 

Calculate probability of transition of Csite using True Acceptor HMM 

Unit 

P(F = 1 |Csite ,N
(t ) )  as in equation (11); 

by calculating probability of transition of Csite using False Acceptor 
HMM Unit 

P(F = 0 |Csite ,N
( f ) ) ; 

Calculate sr as in Equation (13); 

Calculate FLAGHMMi; 

Pseudocode 2. Acceptor Splice site junction classification 

algorithm. 

3. RESULTS AND DISCUSSION 

 The classification performance of the models is measured 

in terms of their sensitivity Sn
true

 (TPR), and specificity Sn
false

 

[4, 33]. In the classification performance, TP, TN, FP, and 

FN stand for true positive rate, true negative rate, false 

positive rate, and false negative rate respectively [2, 34] (As 

defined in Table S1). The state transition probabilities for the 

Acceptor and the Donor HMM Systems are shown in Tables 

S2-S5. 

 Our proposed system increased the differences between 

the true splice site and false splice sites to the maximum as 

verified from the results which are shown in Tables 2 and 3. 

A 12-fold cross validation technique is applied to identify 

the splice site prediction accuracy, and the average results 

for all the 12 test sets are shown. Their classification 

efficiency was evaluated by various quantitative variables - 

(i) true positive (TP): the number of correctly classified 

splice site, (ii) true negative (TN): the number of correctly 

classified non-splice site, (iii) false positive (FP): the number 

of incorrectly classified splice site, and, (iv) false negative 

(FN): the number of incorrectly classified non-splice site. 

The sensitivity Sn
true

 or True Positive Rate (TPR), defined as 

the fraction of correctly classified true acceptor (or true 

donor) sites among the total number of true acceptor (or true 

donor) sites in the test data, is shown in following equation: 

TPR or Sn
true

=
TP

TP + FN
 (14) 

 Analogously, the specificity Sn
false

 is defined as the 

fraction of correctly classified false acceptor (or false donor) 

sites among the total number of false acceptor (or false 

donor) sites in the test data, i.e. 
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Sn
false

=
TN

TN + FP
,  (15) 

 The similar calculations are also used for identifying 
false positive Rate (FPR) as the fraction of incorrectly 
classified true acceptor (true donor) sites among the total 
number of false acceptor (or false donor) sites in the test 
dataset, i.e. 

FPR =
FP

TN + FP
,  (16) 

 

 Accuracy ( ACC ) is a parameter of the test which is the 

proportion of the candidate site in the given test data those 

are classified correctly (or accurately) and gives a fair idea 

that whether the proposed system can classify the true and 

false splice sites into right categories. Accuracy is calculated 

by the formula: 

ACC =
TN +TP

TN +TP + FN + FP
 (17) 

 Acceptor HMM System can correctly identify 95% of the 
true acceptor sites and 92% of the false acceptor sites in the 
test data, as shown in Table 2. Similarly Donor HMM 
System can able to predict 95% of the true donor sites and 
97% of the false donor sites in the test data set, as depicted in 
Table 3. Accuracy of the candidate acceptor sites is 92%, 
and for donor sites value is 97% [5]. Their accuracy 
performances are shown in Figs. (6, 7) respectively. 

 

Table 2. The Acceptor HMM Performance for 3’ Splice Site Prediction 

 

Set No of True Acceptor No of False Acceptor TP FP TN FN Sensitivity Sn
true  Specificity Sn

false  FPR Accuracy ACC 

1 208 19782 190 1028 18754 18 0.9134 0.9480 0.0519 0.9476 

2 200 21531 184 1273 20258 16 0.92 0.9408 0.0591 0.9406 

3 209 21001 195 1299 19702 14 0.9330 0.9381 0.0618 0.9380 

4 210 18965 197 1301 17664 13 0.9380 0.9313 0.0686 0.9314 

5 203 18966 193 1297 17669 10 0.9507 0.9316 0.0683 0.9318 

6 200 22000 191 1598 20402 9 0.9550 0.9273 0.0726 0.9276 

7 208 21343 199 1587 19756 9 0.9567 0.9256 0.0743 0.9259 

8 213 21457 206 1573 19884 7 0.9671 0.9266 0.0733 0.9270 

9 206 20876 199 1578 19298 7 0.9660 0.9244 0.0755 0.9248 

10 212 18790 206 1485 17305 6 0.9716 0.9209 0.0790 0.9215 

11 209 17986 203 1490 16496 6 0.9712 0.9171 0.0828 0.9177 

12 209 18003 203 1498 16505 6 0.9712 0.9167 0.0832 0.9174 

Average 0.9512 0.9290 0.0709 0.9293 

 

Table 3. The Donor HMM Performance for 5’ Splice Site Prediction 

 

Set No of True Donor No of False Donor TP FP TN FN Sensitivity Sn
true  Specificity Sn

false  FPR Accuracy ACC 

1 208 16242 194 200 16042 14 0.9326 0.9876 0.0123 0.9869 

2 200 15101 188 199 14902 12 0.94 0.9868 0.0131 0.9862 

3 209 16261 196 231 16030 13 0.9377 0.9857 0.0142 0.9851 

4 210 13411 198 235 13176 12 0.9428 0.9824 0.0175 0.9818 

5 203 12301 192 266 12035 11 0.9458 0.9783 0.0216 0.9778 

6 200 15235 190 348 14887 10 0.95 0.9771 0.0228 0.9768 

7 208 17221 200 397 16824 8 0.9615 0.9769 0.0230 0.9767 

8 213 15815 205 382 15433 8 0.9624 0.9758 0.0241 0.9756 

9 206 15863 199 399 15464 7 0.9660 0.9748 0.0251 0.9747 

10 212 13123 206 378 12745 6 0.9716 0.9711 0.0288 0.9712 

11 209 14331 204 452 13879 5 0.9760 0.9684 0.0315 0.9685 

12 209 14354 209 487 13867 5 0.9766 0.9660 0.0339 0.9662 

Average 0.9552 0.9776 0.0223 0.9773 
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and for donor sites value is 97% [5]. Their accuracy 
performances are shown in Figs. (6, 7) respectively. 

 The result of our proposed HMM System (Acceptor 
HMM System and Donor HMM System) on the test data 
were compared with NNSplice (http://www.fruitfly.org/seq_ 
tools/splice.html), GENIO (http://genio.informatik.uni-stuttg 
art.de/GENIO) using our test data for the comparison. Both 
of these splice site predictors offer a web page (already 
mentioned) where the DNA sequences can be submitted for 
the generating the results of the data, therefore, we submitted 
our dataset to each of the websites, and used the default 
parameters to predict the results. Table 4 shows the overall 
comparison of our proposed HMM System with two of the 
systems – NNSplice and GENIO. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Receiver Operating characteristic (ROC) curve showing 

the comparison of performance between HMM System, GENIO 

and NNSplice Acceptor test dataset. 

4. CONCLUSION 

 A modified hidden markov model (HMM) is developed 
with new method for the identification of eukaryotic splice 
sites with a different topology (Donor and Acceptor Model) 
from the previously reported splicing junction detection 
mechanism. We have used 12-way cross validation 
experiment, which proves the method’s simplicity and 
effectiveness. The comparison of our proposed HMM system 
with other splice site predictors NNSplice and GENIO  
 

indicates that HMM system is considerably better in 
sensitivity. In addition, the system is able to correctly predict 
95% of the true donor sites and 97% of the false donor sites 
in the test data set; 95% of the true acceptor sites and 92% of 
the false acceptor sites in the test data set. Overall, this 
system is comparatively better in sensitivity and can 
correctly detect 97% of the true donor sites and 92% of the 
true acceptor sites in the standard sequenced data. Hence, 
this method can be utilized to identify splice sites in the large 
scale in newly genomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). Receiver Operating characteristic (ROC) curve showing 

the comparison of performance between HMM System, GENIO 

and NNSplice Donor test dataset. 
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Table 4. Accuracy of Acceptor and Donor Splice Site Detection Compared for HMM System, NNSplice and GENIO on the Human 

Test Dataset 

 

 Splice Site Predictor Sensitivity Specificity False Positive Rate (FPR) 

HMM System (all data) 0.9512 0.9290 0.0709 

NNSplice (all data) 0.6419 0.9483 0.05165 Acceptor Site 

GENIO (all data) 0.7959 0.9523 0.0476 

HMM System (all data) 0.9552 0.9776 0.0223 

NNSplice (all data) 0.7116 0.9367 0.0633 Donor Site 

GENIO (all data) 0.8624 0.9406 0.0594 
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SUPPLEMENTARY MATERIAL 

 Supplementary material is available on the publisher’s 
web site along with the published article.  
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