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An Spiking Neural P system with anti-spikes uses two types of objects called spikes and
anti-spikes which can encode binary digits in a natural way. The step when system emits
a spike or an anti-spike is associated with symbol 1 and 0, respectively. Here we consider
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the rules ac → a and ac → a, c ∈ N, thus help to generate languages which cannot be
generated using simple SN P systems.
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1. Introduction

Spiking neural P systems (shortly called SN P systems) introduced in [4] are math-

ematical models inspired by the neurobiological behaviour of neurons sending elec-

trical pulses of identical voltages called spikes to neighbouring neurons through
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synapses. An SN P system is represented as a directed graph where nodes corre-

spond to the neurons having spiking rules and forgetting rules. The rules involve

the spikes present in the neuron in the form of occurrences of a symbol a. The

arcs indicate the synapses among the neurons. The spiking rules are of the form

E/ar → a and are used only if the neuron contains n spikes such that an ∈ L(E)

and n≥ r, where L(E) is the language represented by regular expression E. In this

case ar number of spikes are consumed and one spike is sent out. When neuron σi

sends a spike, it is replicated in such a way that one spike is immediately sent to all

neurons j such that (i, j) ∈ syn, where syn is the set of arcs between the neurons.

The transmission of spikes takes no time, the spike will be available in neuron j in

the next step. The forgetting rules are of the form as → λ and are applied only

if the neuron contains exactly as spikes. The rule simply removes s spikes. For all

forgetting rules, s must not be the member of L(E) for any firing rule within the

same neuron. A neuron is bounded if for every firing rule E/ar → a, E denotes a

finite regular expression. An SN P system is called bounded if all the neurons in the

system are bounded.

SN P system with anti spikes (or SN PA system) introduced in [7], is a variant

of an SN P system consisting of two types of objects, spikes (denoted as a) and

anti-spikes (denoted as a). The inhibitory impulses/spikes are represented using

anti-spikes. The anti-spikes behave in a similar way as spikes by participating in

spiking and forgetting rules. They are produced from usual spikes by means of usual

spiking rules; in turn, rules consuming anti-spikes can produce spikes or anti-spikes

(here we avoid the rule anti-spike producing anti-spike). There is an additional

fact that a and a cannot stay together, so annihilate each other. If a neuron has

either objects a or objects a, and further objects of either type(maybe both) arrive

from other neurons, such that we end with ar and as inside, then immediately an

annihilation rule a a → λ, which is implicit in each neuron, is applied in a maximal

manner, so that either ar−s or as−r remain for the next step, provided that r ≥ s

or s ≥ r, respectively. This mutual annihilation of spikes and anti-spikes takes no

time and the annihilation rule has priority over spiking and forgetting rules, so the

neurons always contain either only spikes or anti-spikes. Like in [7], we avoid using

rules ac → a, but not the other three types, corresponding to the pairs (a, a), (a, a),

(a, a). If we have a rule E/br → b′ with L(E) = {br}, then we write it in the

simplified form br → b′.

The initial configuration of the system is described by C =< n1, n2, · · · , nm >

where m is the number of neurons in the system and ni is the initial number of

spikes present in neuron i if ni > 0 or initial number of anti-spikes if ni < 0. A

global clock is assumed in SN PA system and in each time unit, each neuron which

can use a rule should do it (the system is synchronized), but the work of the system

is sequential locally: only (at most) one rule is used in each neuron. Using the rules

in this way, we pass from one configuration of the system to another configuration,

such a step is called a transition. A computation is a finite or infinite sequences of

transitions starting from the initial configuration. A computation halts if it reaches
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a configuration where no rule can be used. Note that the transition of configuration

C is non-deterministic in the sense that there may be different rules applicable

to C.

An SN PA system can be used as a computing device in various ways. Here

we use them as language generators. One of the neuron is considered as output

neuron and it sends output to the environment. The moments of time when a spike

is emitted by the output neuron are marked with 1, the moments of time when an

anti-spike emitted is marked with 0 and no output moments are just ignored. This

binary sequence is called the spike train of the system- it might be infinite if the

computation does not stop. With halting configurations, we associate a language,

the binary strings describing the spike trains.

The complexity of an SN PA system Π is described as LSNPAm

(rulek,consp1,p2
, forgq1,q2), the family of languages L(Π), generated by systems Π

with at mostm neurons, each neuron having at most k rules, each of the spiking rules

consuming at most p1 spikes and p2 anti-spikes and each forgetting rule removing at

most q1 spikes and q2 anti-spikes. As usual a parameterm, k, p1, p2, q1, q2 is replaced

with ∗ if it is not bounded. If the underlying SN PA systems are finite, we denote

the corresponding families of languages by LFSNPAm(rulek, consp1,p2
, forgq1,q2).

The power of different variants of SN P systems as language generators are

investigated in [3, 2, 1]. It was shown in [3] that some finite languages cannot be

generated using simple SN P systems but it was proved in [2] that SN P systems

with extended rules can generate the finite languages. SN PA system uses standard

rules, adding one symbol at a time, but allows non-determinism between its rules like

ac → a and ac → a, thus helps to generate languages that cannot be generated by

simple SN P systems. In the present paper we address the power of SN PA systems

as language generators, in particular, by considering bounded SN PA systems and

comparing the languages generated with the results obtained in [6] for standard SN

P systems.

Example 1.1

Consider the graphical representation of an SN P system with anti-spikes in Fig.1,

the neurons are represented by nodes of a directed graph whose arrows represent the

synapses; an arrow also exits from the output neuron, pointing to the environment;

in each neuron we specify the rules and the spikes present in the initial configuration.

It is formally denoted as

Π1=(O, σ1, σ2, syn , 2), with

σ1 = (-1, {a → a }), σ2 = (2, {a2/a → a , a2 → a} ), syn={(1, 2), (2, 1)}.

The evolution of the system Π1 can be analysed on a transition diagram as that

from Fig.1(b) because the system is finite, the number of configurations reachable

from the initial configuration is finite too, hence, we can place them in the nodes

of a graph and between two nodes/configurations we draw an arrow if and only if a

direct transition is possible between them. In the Fig.1(b), we have also indicated

the rules used in each neuron with the following conventions; for each rij we have
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Fig. 1. SN P system with anti-spikes generating 0∗1.

written only the subscript ij with 21 written in italics and 22 in bold in order to

indicate that an anti-spike is sent to environment at steps when 21 is used and a

spike when 22 is used; when a neuron i uses no rule, we write i0.

The functioning can easily be followed on this diagram, so that we only briefly

describe it. We have two neurons, with labels 1, 2; neuron 2 is the output neuron.

Initially neuron 1 has one anti-spike with a rule and neuron 2 has two spikes with

two rules and non-determinism between its two rules. So the initial configuration

of the system, C0 =< −1, 2 >.

The two neurons fire in the first step. Neuron 1 the first rule a → a } and sends

a spike(1) to neuron 2. Neuron 2 can choose any of its two rules and as long as it

uses first rule, one spike is changed into anti-spike which will be sent to environment

and neuron 1. In the next step the system will be in the same configuration. At any

instance of time, starting from step 1, neuron 2 can choose its second rule, which

consumes its two spikes and sends a spike to neuron 1 and environment. In the next

step each neuron will have one spike, reaching the configuration < 1, 1 > and the

systems halts.

The transition diagram of a finite SN PA system can be interpreted as the

representation of a non-deterministic finite automaton, with C0 being the initial

state, the halting configurations being final states and each arrow being marked

with 0 if in that transition the output neuron sends an anti-spike and with 1 if it

sends a spike. In this way, we can identify the language generated by the system.

In the case of finite SN P system Π1, the language generated is 0∗1.

2. Languages Generated by SN P Systems with Anti-spikes

The following observations show that some finite languages and regular languages

which cannot be generated using simple bounded SN P systems proved in [3] can

be generated using bounded SN PA systems with one neuron. Here B = {0, 1} is

the binary set. B+ is the set of all binary strings formed using the alphabet B.
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2.1. Finite binary languages

Observation 1 Languages of the form Lk,j = {0k, 10j}, for k ≥ 1, j ≥ 0 can be

generated by bounded SN PA system.

An SN PA system generating Lk,j = {0k, 10j} is the following.

Π1=({a, a}, σ1=(j + k,R1), ∅, 1), where

R1 = {aj+k/ak → a, aj+k/aj+1 → a} ∪ {al/a → a|1 ≤ l ≤ j + k − 1}.

Theorem 1. If L = {x}, x ∈ B+, |x|1 = r ≥ 0, then L ∈

LFSNPA1(rule|x|, cons1,0, forg0,0), where |x| is the length of the string x and |x|1
is the number of occurrences of symbol 1 in x.

Proof. Let us consider the string x = 0n110n2 · · · 0nr10nr+1 , for nj ≥ 0, 1 ≤

j ≤ r + 1 (if x = 0n1 , then r = 0). The SN P system from Fig.2 generates the

string x. The output neuron initially contains |x| spikes. The second set of rules

a|x|−(
∑j

i=1
ni+j−1)/a → a sends a spike(1) at

∑j

i=1 ni + j − 1, 1 ≤ j ≤ r places

where as the first set of rules allows an anti-spike to be sent out at other places.

Depending upon the number of spikes available, a unique rule is used in each step to

generate either spike or anti-spike, resulting |x| rules. In the case r = 0, the system

1

output 

i

i

Fig. 2. SN P system with anti-spikes generating a singleton language.

cannot use the second set of rules as |x| = n1. The first set of rules are used for

j = 1 and k = 1 to n1, outputting the string 0n1 .

Bounded SN P systems with standard rules cannot generate all binary finite lan-

guages, but with anti-spikes help in this respect.

Theorem 2. LFSNPA1(rule∗, cons∗,∗, forg∗,∗) = BFIN , BFIN is the family

of finite languages over binary alphabet.

Proof. The inclusion LFSNPA1(rule∗, cons∗,∗, forg∗,∗) ⊆ BFIN can be easily

proved. In each step, the number of spikes present in a system with only one neuron

decreases by at least one, hence any computation lasts at most as many steps as

the number of spikes/anti-spikes present in the system at the beginning. Thus, the

generated strings have a bounded length.
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To prove the opposite inclusion BFIN ⊆ LFSNPA1(rule∗, cons∗,∗, forg∗,∗),

let us take a finite language, L = {x1, x2, · · · , xm} ⊆ B∗,m ≥ 1, and let xj =

0sj,110sj,2 · · · 10sj,rj+1 for rj ≥ 0, sj,l ≥ 0, 1 ≤ l ≤ rj + 1, 1 ≤ j ≤ m.

Let | xj |= nj, 1 ≤ j ≤ m and αj =
∑j

i=1 ni, 1 ≤ j ≤ m

An SN PA system which generates the language L is the following.

Π=({a, a}, σ1, φ, 1), σ1 = (αm, R1)

R1=({aαm/aαm−(αj−1) → b | b = a if sj,1 ≥ 1 and b = a if sj,1 = 0, 1 ≤ j ≤ m}

∪{aαj−1−(
∑l

i=1
si,l+l−k−1/a → a | sj,1 ≥ 2, sj,l ≥ 1, 2 ≤ l ≤ rj + 1, 1 ≤ k ≤ sj,l, 1 ≤

j ≤ m} ∪{aαj−1−(
∑l

i=1
si,l+l−1/a → a | 1 ≤ l ≤ rj , 1 ≤ j ≤ m} ∪{aαj−1 → λ | 2 ≤

j ≤ m})

Initially, only a rule aαm/aαm−(αj−1) → b can be used, and in this way it non-

deterministically choose the string xj to generate and output spike/anti-spike de-

pending on the first bit of xj . The neuron is left with αj − 1 spikes. The rules for

generating the remaining bits are similar to rules of SN PA system in Theorem 1.

After generating xj , αj−1 spikes remain in the neuron, and are forgotten using the

rule aαj−1 → λ.

We observe that the rules which are used in the generation of a string xj cannot

be used in the generation of a string xk with k 6= j.

2.2. Regular binary languages

We now pass to investigating the relationships with the family of regular languages

over the binary alphabet. It was proved in [6] that 0∗1 cannot be generated by

any bounded SN P system. But in example 1.1 we have constructed SN PA system

generating the language 0∗1.

Theorem 3. LFSNPA∗(rule∗, cons∗,∗, forg∗,∗) = BREG, BREG is the family

of regular binary languages.

Proof. The inclusion LFSNPA∗(rule∗, cons∗,∗, forg∗,∗) ⊆ BREG follows from

the fact that for each finite SN PA system, we can construct the corresponding

transition diagram associated with the computations of the SN PA system and then

interpret it as the transition diagram of a finite automaton (with an arc labeled by

1 when the output neuron sends a spike and labeled by 0 when the output neuron

sends an anti-spike) as already done in the example of Section 1.

To prove the opposite inclusion that if L ⊆ B∗, L ∈ BREG, then L ∈

LFSNPA∗(rule∗, cons∗,∗, forg∗,∗), we consider the right-linear grammar G =

(N, T, S, P ) such that L = L(G) and having the following properties.

1. N = {A1, A2, · · · , An}, n ≥ 1 and S = An.

2. The rules in P are of the form Ai → 0Aj | 1Aj | 0 | 1 where i, j ∈ {1, 2, · · · , n}.

We construct the following SN P system:

Π=({a, a}, σ1, σ2, · · · , σn+1, syn , n+ 1), with

σi = (1, {a → a, a → a }), i = 1, 2, · · · , n,
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n
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aa a 
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a

a 

1

a 
a a 

a

.  .  .  .  .  .  .  . 

n+1

Fig. 3. The SN PA system from the proof of Theorem 3.

σn+1 = (3n, {a2n+i/an+i−j → b′ | Ai → bAj ∈ P}∪{a2n+i → b′ | Ai → b ∈ P})

where b ∈ {0, 1} and b′ = a if b = 1 and b′ = a if b = 0,

syn={(1, n+ 1), (n+ 1, 1), (2, n+ 1), (n+ 1, 2), · · · , (n, n+ 1), (n+ 1, n)}.

For easier understandability, the system is also given graphically in Fig.3. The

output neuron σn+1 fires in the first step by a rule a2n−j → b′ ( or a3n → b′)

associated with a rule An → bAj (or An → b) from P , produces either a spike or

an anti-spike depending upon whether b = 1 or b = 0 and receives n spikes from

its neighbouring n neurons. The neurons 1 to n are meant to continuously load the

neuron n+ 1 with n spikes, provided that they receive spike or an anti-spike from

the output neuron.

Assume in some step t, the rule a2n+i/an+i−j → b′, for Ai → bAj or a2n+i → b′

for Ai → b is used, for some 1 ≤ i ≤ n, and n spikes are received from other

neurons. If the first rule is used, then n + i − j spikes are consumed and n + j

spikes remain in the output neuron. Then in the step t + 1, we have 2n+ j spikes

in neuron σn+1, and a rule for Aj → bAl or Aj → b can be used. In this step also

the output neuron receives n spikes from its neighbouring neurons. In this way, the

computation continues, unless the second rule is used.

If the second rule is used, then all spikes of the output neuron are consumed

sending a spike or an anti-spike to other n neurons and n spikes are received from

them. Then in the next step the output neuron again receives n spikes, but no rule

is used, so no spike is produced. So it stops loading the other n neurons and the

computation halts. In this way, all strings in L can be generated.

The power of SN PA systems goes beyond the regular languages. We first illustrate

this assertion with an example from Fig.4, that generates the language L(Π) =

{0n1n | n ≥ 1}; observe that the system is not finite due to the rule (aa)+a/a2 → a

in the neuron 3 and the output is delayed for two steps.
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Fig. 4. An SN P system with anti-spikes generating a context free language.

The reader can check that in n ≥ 0 steps when neuron 2 uses the first rule

a2/a → a, the neuron 3 accumulates 2n+ 2 spikes and neuron 1 sends a spikes to

neuron 4, which in turn sends a spike to output neuron, which uses its first rule and

sends an anti-spike(0) to environment. At any step n ≥ 1, when the neuron 2 uses

the rule a2 → a, the spike from neuron 1 and anti-spike from neuron 2 will annihilate

each other in neuron 3, remaining again with 2n + 2 spikes. Neuron 2 receives a

spike from neuron 5 where as neuron 5 receives an anti-spike from neuron 2. In the

same step spike from neuron 1 is also sent to neuron 4. In the n + 1 step neuron

1 and 5 forget their anti-spikes received from neuron 2. Neuron 4 sends a spike to

neuron 6. Neuron 2 uses its third rule a → a by sending an anti-spike to neuron 3

and 5. Neuron 3 is left with 2n + 1 spikes and neuron 5 with an anti-spike which

will be forgotten in the next step. In the n+ 2 step, the neuron 6 outputs a spike

(that means total of n + 1 spikes) and neuron 3 starts firing the as number spikes

present becomes odd, and the rule (aa)+a/a2 → a repeatedly used until one spike

remains; this last spike is used by the second rule a → a. These n+1 anti-spikes are

converted into spikes and sent to environment by the output neuron 6. Actually,

much more complex languages can be generated by SN PA systems. The previous

construction can be extended to non-context-free language like {0n1n0n/n ≥ 1}.

2.3. A characterization of recursively enumerable languages

A characterization of recursively enumerable (RE) languages is possible in terms of

languages generated by SN PA systems. Here we use the notion of a deterministic

register machine. Such a device is a construct M = (m,H, l0, lh, I), where m is the

number of registers, H is the set of instruction labels, l0 is the start label, lh is the

halt label (assigned to instruction HALT), and I is the set of instructions labelled

in a one-to-one manner by the labels from H .
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Theorem 4. For every alphabet V = {a1, a2, · · · , as} there is a morphism h : V ∗ →

B∗ such that for each language L ⊆ V ∗, L ∈ RE, there is an SN PA system Π such

that L = h−1(L(Π)).

Proof. We follow here the same idea as in the proof of Theorem. 9 from [3] adapted

to the case of anti-spikes.

The morphism is defined as follows:

h(ai) = 0i1, for i = 1, 2, · · · , s,

For a string x ∈ V ∗, let us denote by vals(x), the value in base s + 1 of x.(We

use base s+ 1 in order to consider the symbols of a1, a2, · · · , as as digits 1, 2, · · · s,

thus avoiding the digit 0 in the left hand of the string). We extend this notation in

the natural way to the set of strings. Now consider a language L ⊆ V ∗. Obviously

L ∈ RE iff vals(L) is recursively enumerable set of numbers. In turn, a set of

numbers is recursively enumerable if and only if it can be accepted by a deterministic

register machine [5]. Let M be such a register machine that is N(M) = vals(L).

We construct an SN PA system Π performing the following operations (σc0 and

σc1 are two distinguished neurons of Π, which are empty in the initial configuration):

1. Output i anti-spikes, for some 1 ≤ i ≤ s, and at the same time introduce the

number i in neuron σc0 ; in the construction below, a number n is represented in

a neuron by storing there 2n spikes, hence the previous task means introducing

2i spikes in neuron σc0.

2. When this operation is finished, output a spike hence up to now we have produced

a string 0i1.

3. Multiply the number stored in neuron σc1 (initially, we have here number 0) by

s + 1, then add the number from neuron σc0 ; specifically, if neuron σc0 holds

2i spikes and neuron σc1 holds 2n spikes, n ≥ 0; then we end this step with

2(n(s+1)+ i) spikes in neuron σc1 and no spike in neuron σc0 : In the meantime,

the system outputs no spike/anti-spike.

4. Repeat from step 1, or, non-deterministically, stop the increase of spikes from

neuron σc1 and pass to the next step.

5. After the last increase of the number of spikes from neuron c1 we have got vals(x)

for a string x ∈ V + such that the string produced by the system up to now is of

the form 0i11λj10i21λj2 · · · 0im1λjm , for 1 ≤ il ≤ s and jl ≥ 1, for all 1 ≤ l ≤ m.

λ is a symbol for no output, which is ignored. i.e., h(x) = 0i110i21 · · · 0im1. We

now start to simulate the work of the register machine M in recognizing the

number vals(x). During this process, we output no spike, but the computation

halts if (and only if) the machineM halts, i.e., when it accepts the input number,

which means that x ∈ L.

From the previous description of the work of Π, it is clear that the computation

halts after producing a string of the form y = 0i11λj10i21λj2 · · · 0im1λjmλk as above,

if and only if x ∈ L. Moreover, it is obvious that x = h−1(y): we have h−1(y) =

ai1 · · ·aim .
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Fig. 5. The structure of the SN PA system from the proof of Theorem 5.

Now, it remains to construct the system Π. Instead of constructing it in all

details, we rely on the fact that a register machine can be simulated by an SN PA

system, as already shown in [7] for the sake of completeness and because of some

minor changes in the construction, we below recall the details of this simulation.

Then, we also suppose that the multiplication by s + 1 of the contents of neuron

c1 followed by adding a number between 1 and s is done by a register machine

(with the numbers stored in neurons c0, c1 introduced in two specified registers);

we denote this machine by M0. Thus, in our construction, also for this operation we

can rely on the general way of simulating a register machine by an SN PA system.

All other modules of the construction (introducing a number of spikes in neuron

c0, sending out spikes, choosing non-deterministically to end the string to generate

and switching to the checking phase, etc.) are explicitly presented below.

A delicate problem which appears here is the fact that the simulations of both

machines M0 and M have to use the same neuron c1, but the correct work of

the system (the fact that the instructions of M0 are not mixed with those of M)

will be explained below. The overall appearance of Π is given in Fig.5, where M0

indicates the subsystem corresponding to the simulation of the register machine

M0 = (m0, H0, l0,0, lh,0, I0) and M indicates the subsystem which simulates the

register machine M = (m,H, l0, lh, I). Of course, we assume H0 ∩H = ∅.

We start with s+1 spikes in neuron 1 and fires by using some rule as+1/as+1−i →

a; 1 ≤ i ≤ s, then in next i − 1 steps, it uses its second rule producing a total of

number i anti-spikes and the last spike is used by the third rule producing spike,
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hence the first letter ai of the generated string. In each step, when neuron 1 is

producing an anti-spike, 2 spikes are sent to the neuron c0 through the neurons

2 and 3, accumulating a total of 2i spikes and the step when the output neuron

produces a spike, it is ignored by neuron 2 and 3 and two spikes are sent to neuron

l0,0 ; thus triggering the start of a computation in M0.

The subsystem corresponding to the register machine M0 starts to work, mul-

tiplying the value of c1 with s + 1 and adding i. When this process halts, neuron

lh,0 is activated (this neuron will get two spikes in the end of the computation and
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Fig. 6. (a) Module ADD (simulating li : (ADD(r), lj)) for M and M0, Module SUB (simulating
li : (SUB(r), lj ; lk)) (b) for machine M and (c) for machine M0.
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will spike), and in this way one spike is sent to neuron 6 : This is the neuron which

non-deterministically chooses whether the string should be continued or we pass

to the second phase of the computation, checking whether the produced string is

in L(M). In the first case, neuron 6 uses the rule a → a; which makes neurons

e1, · · · , es+1 spike; these neurons send s+1 spikes to neuron 1, like in the beginning

of the computation. In the latter case, neuron 6 uses the rule a → a; which in turn

activates the neuron 7 and 8, they activate l0 by sending two spikes to it, thus

starting the simulation of the register machine M . The computation of Π stops if

and only if vals(x) is accepted by M . In order to complete the proof we need to

show how the two register machines are simulated, using the common neuron c1 but

without mixing the computations. To this aim, we consider the modules ADD and

SUB from Fig.6. Neurons are associated with each label of the machine (they fire

if they have two spikes inside) and with each register (with 2n spikes representing

the number n from the register), there also are additional neurons with labels g1
i,

i ≥ 1 it is important to note that all these additional neurons have distinct labels.

The simulation of (ADD(r), lj) (add 1 to register r and then go to the instruction

with label lj) instruction is easy, we just add two spikes to the respective neuron;

no rule is needed in the neuron Fig. 6(a). The (SUB(r), lj , lk) (if register r is non-

empty, then subtract 1 from it and go to the instruction with label lj, otherwise go

to the instruction with label lk) instructions of machines M and M0 are simulated

by modules as in Fig. 6(b) and 6(c), respectively. Note that the rules for M fire for

a content of the neuron r described by the regular expression (a2)∗a and the rules

for M0 fire for a content of the neuron r described by the regular expression (a)2.

This ensures the fact that the rules of M0 are not used instead of those of M or

vice versa. With these explanations, the reader can check that the system Π works

as requested.

The previous theorem gives a characterization of recursively enumerable languages,

because the family RE is closed under direct and inverse morphisms.

3. Conclusion

We have investigated here the power of SN PA systems with standard rules as lan-

guage generators. We have proved characterizations of finite and regular languages

over binary alphabet. We can extend the proofs to any alphabet by considering the

morphisms. We have also proved a characterization of recursively enumerable lan-

guages. Here we ignored the no output steps. Finding representations of languages

over three letter alphabet: no output, producing spikes and producing anti-spikes

remains as a research topic.
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