
International Journal of Computer Applications (0975 – 8887)

Volume 28– No.11, August 2011

29

Randomized Algorithms: Methods and Techniques

Kuldeep Sharma
Assistant Professor

Computer Science & Engineering Department,

Chitkara University, H.P.

Dr. Deepak Garg
Senior Member IEEE

Computer Science &Engineering Department,

Thapar University, Patiala

ABSTRACT
Randomized Algorithms are now gaining the attention of

researchers. The reason is that some of the randomized

algorithms have been successfully implemented in important

applications reducing the time complexity and other

computing resources. This paper reviews the different
methods and techniques available in randomized algorithms.

Paper also gives the gaps in the existing research and the

future scope of research in this area.

Keywords: Randomized Algorithms, LP Rounding,

Monte Carlo.

1. INTRODUCTION
Everybody in the theory of computing community is well

acquainted with the concept of randomization. It is not an

exaggeration to say that randomization is currently one of the
major approaches to algorithm design.

A randomized algorithm is an algorithm which typically uses

the random input in the hope of achieving good performance

in the "average case". Formally, the algorithm's performance

will be a random variable determined by the random inputs,
with good expected value. The "worst case" is typically so

unlikely to occur that it can be ignored. Consider the

problem of finding a P in an array of n elements, given that

half are P’s and the other half are Q’s. The obvious approach

is to look at each element of the array, but this would take
very long (n/2 operations) if the array were ordered as P first

followed by Q. There is a similar drawback with checking in

the reverse order, or checking every second element. In fact,

with any strategy at all in which the order in which the

elements will be checked is fixed, i.e. a deterministic
algorithm, we cannot guarantee that the algorithm will

complete quickly for all possible inputs. On the other hand,

if we were to check array elements at random, then we will

quickly find P with high probability, whatever is the input. In

the example above, the randomized algorithm always outputs
the correct answer, it is just that there is a small probability

of taking long to execute. Sometimes we want an algorithm

which always complete quickly, but allow a small

probability of error. Monte Carlo methods are methods of

approximation of the solution to problems of computational
mathematics, by using random processes for each such

problem, with the parameters of the process equal to the

solution of the problem. The method can guarantee that the

error of Monte Carlo approximation is smaller than a given

value with a certain probability. So, Monte Carlo methods
always produce an approximation of the solution, but one

can control the accuracy of this solution in terms of the

probability error. The Las Vegas method is a randomized

method which also uses random variable or random

processes, but it always produces the correct result (not an
approximation). The only variant is that it’s running time

might change between executions. A typical example is the

well-known Quick sort method. Usually Monte Carlo

methods reduce problems to the approximate calculation of
mathematical expectations. Observe that any Las Vegas

Algorithm can be converted into a Monte Carlo Algorithm,

by having it output an arbitrary, possibly incorrect answer if

it fails to complete within a specified time [1].

A randomized algorithm is one that receives, in addition to
its input data, a stream of random bits that it can use for the

purpose of making random choices. Even for a

predetermined input, diverse runs of a randomized algorithm

may give altered results; as a consequence it is inevitable

that a description of the properties of a randomized algorithm
will engage probabilistic statements. For example, even

when the input is preset, the execution time of a randomized

algorithm is a random variable. Behavior of randomized

algorithm varies from one execution to another even with a

fixed input.

Random variable is a function. For case in point, we can talk

formally about these dice is to define the random variable Y1

representing the result of the first die, Y2 representing the

result of the second die, and Y = Y1 + Y2 representing the

sum of the two. We could then ask: what is the probability
that Y = 7?

One property of a random variable we often care about is its

expectation.

Randomized algorithms are tool in computational number
theory; have by now found widespread application. Growth

has been fuelled by the two major benefits of randomization

one is its simplicity another one is speed. Numerous

applications found that randomized algorithm is the fastest

algorithm available, or the simplest in most of cases it is
both. In the analysis of a randomized algorithm which

establish bounds on the expected value of a performance

measure (e.g., the running time of the algorithm) that are

valid for every input; the distribution of the performance

measure is on the random choices made by the algorithm
based on the random bits provided to it [2].

1.1 Complexity Analysis
If one would like to consider Exp-TimeA as a function of the
input size, then one uses the worst case approach, i.e., the

expected time complexity of A is

Exp-TimeA(n)= max { Exp-TimeA(x) | x is an input of size

n} for every n Є N

It is often not easy to analyze Exp-TimeA(n) for a given
randomized algorithm A. To overcome this difficulty one

also uses the worst case approach from the beginning. This

means:

TimeA(x) = max {Time(C) | C is a run of A on x}.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.11, August 2011

30

Then, the (worst case) time complexity of A is

TimeA(n)= max { TimeA(x) | x is an input of size n }.

This definition may be misleading in some cases. This is

because randomized algorithms may allow infinite runs

provided that they occur with a reasonably small probability

on any given input.

Randomized algorithms are better than deterministic one’s
simple example is Quick Sort.

Randomized Quick sort (RQS)

Input: S = {a1. . . an}

Step 1: Choose an i Є {1 . . . n} uniformly at random

Step 2: if n = 1 output(S)

S<:= {b Є S|b < ai}

 else

S=:= {b Є S|b = ai}

S>:= {b Є S|b > ai}

Step 3: Recursively sort S< and S>

Output: RQS(S<), S=, RQS(S>)

In simple algorithm the worst case complexity is O (n2)

where in Randomized Algorithm its

O (n log n) [3].

2. DESIGN PARADIGMS OF

RANDOMIZED ALGORITHMS

2.1 Abundance of Witnesses
Time and again a computational problem required a witness

or a certificate that capably authenticate a hypothesis. Say, a

number x has certain property i.e. x is prime; to justify this
property it need proof (witness) but for many problems, the

witness lies in a search space that is too large to be searched

exhaustively. However, if the search space were to contain a

relatively large number of witnesses, a randomly chosen

element is likely to be a witness. Further, autonomous
repetitions of the sampling reduce the probability that a

witness is not found on any of the repetitions. The most

prominent examples of this phenomenon occur in number

theory. Indeed, the problem of testing a given integer for

primality has no known deterministic polynomial-time
algorithm. There are, however, several randomized

polynomial-time algorithms [4] that will, on any input,

correctly perform this test with high probability.

2.2 Fingerprinting and Hashing
A fingerprint is the image of an element mapping into

another Fingerprints obtained via random mappings have

many useful properties. For example, in pattern-matching

applications [5] it can be shown that two strings are likely to
be identical if their fingerprints are identical; comparing the

short fingerprints is considerably faster than comparing the

strings themselves. Another example is hashing [6], where

the elements of a set S are stored in a table of size linear in

uSu with the guarantee that the expected number of elements
in S mapped to a given location in the table is O(1). This

leads to efficient schemes for deciding membership in S.

Random fingerprints have found a variety of applications in

generating pseudorandom numbers and complexity theory

(for instance, the verification of algebraic identities [7]).

2.3 Foiling an Adversary
In the classical worst-case analysis of deterministic

algorithms, a lower bound is established on the running time

of algorithms by postulating an “adversary” that constructs

an input on which the algorithm fares poorly. The input thus
constructed may be different for each deterministic

algorithm. With a game-theoretic interpretation of the

relationship between an algorithm and an adversary, we can

view a randomized algorithm as a probability distribution on

a set of deterministic algorithms. (This observation underlies
Yao`s [8] adaptation of von Neumann`s Mini-Max Theorem

in game theory into a technique for establishing limits on the

performance improvements possible via the use of a

randomized algorithm.) Although the adversary may be able

to construct an input that foils one (or a small fraction) of the
deterministic algorithms in the set, it may be impossible to

devise a s ingle input that is likely to defeat a randomly

chosen algorithm. For example, consider a uniform binary

AND-OR tree with n leaves. Any deterministic algorithm

that evaluates such a tree can be forced to read the Boolean
values at every one of the n leaves. However, there is a

simple randomized algorithm [9] for which the expected

number of leaves read on any input is O (n0.794).

2.4 Random Sampling
A pervasive theme in randomized algorithms is the idea that

a small random sample from a population is representative of

the population as a whole. Because computations involving

small samples are inexpensive, their properties can be used
to guide the computations of an algorithm attempting to

determine some feature of the entire population. For

instance, a simple randomized algorithm [10] based on

sampling finds the kth largest of n elements in 1.5n + O(n)

comparison steps, with high probability. In contrast, it is
known that any deterministic algorithm must make at least

2n comparisons in the worst case.

2.5 Rapidly Mixing Markov Chains
Markov chains are probability models for trials of random

experiments of great variety, and their defining characteristic

is that they allow us to consider situations where the future

evolution of the process of interest depends on where it is at

present, but not on how it got there. This contrasts with the
independent trials models we have measured in the law of

large numbers and the central limit theorem. For independent

trial processes the possible outcomes of each trial of the

experiment are the same and occur with the same

probability. Furthermore, what happens on any trial is not
affected by what happens on any other trial. With Markov

chain models we can generalize this to the extent that we

allow the future to depend on the present [11].

In counting problems, the goal is to determine the number of

combinatorial objects with a specified property. When the
space of objects is large, an appealing solution is the use of

the Monte Carlo approach of determining the number of

desired objects in a random sample of the entire space. In a

number of cases, it can be shown that picking a uniform

random sample is as difficult as the counting problem itself.
A particularly successful technique for dealing with such

problems is to generate near uniform random samples by

defining a Markov chain on the elements of the population,

and showing that a short random walk using this Markov

chain is likely to sample the population uniformly.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.11, August 2011

31

This method is at the core of a number of algorithms used in

statistical physics. Examples include algorithms for

estimating the number of perfect matching’s in a graph [12,
13].

3. RANDOMIZED DEPENDENT LP-

ROUNDING ALGORITHM
The application and new properties of dependent rounding

technique in the domain of facility location which uses

methods for uncapacitated facility location. LP-rounding
approximation algorithms for facility location problems are

based on partitioning facilities into disjoint clusters and

opening at least one facility in each cluster. They extend this

approach which provides a quite tight analysis resulting in

the improved approximation ratio. They construct a laminar
family of clusters, which then guides the rounding

procedure. It allows exploiting properties of dependent

rounding, and provides a quite tight analysis resulting in the

improved approximation ratio [14]. They gave a new

randomized LP-rounding 1.725- approximation algorithm for
the metric Fault-Tolerant uncapacitated Facility Location

Problem. This improves on the previously best known 2.076

approximation algorithm of Swamy & Shmoys.

Fig 1. Distances to facilities serving clients

4. RANDOMIZED: ALL PAIR

SHORTEST PATH
Let G (V,E) be an undirected, connected graph with

V={1…..n} and |E|=m. The adjacency matrix A is n x n 0-1

matrix with Ai j = A ji = 1 if and only if the edge (i,j) is present
in E. Given A, we define the distance matrix D and n x n

matrix with non-negative integer entries such that D ij equals

the length of a shortest path from vertex i to vertex j. The

diagonal entries in both A and D are zeroes. Since G is

connected, all entries in D are finite; this is not a restrictive
assumption since a graph can be decomposed easily into

connected components in linear time. The all-pair shortest

path problem is to compute a representation of the shortest

paths between all pairs of vertices, i.e., the paths that

determine the entries in the distance matrix.

The all-pair shortest paths problem can be solved in O (nm)

time, as follows: from each vertex i , compute the

breadth-first search tree Ti rooted at i. Each such tree can be

computed in O (m) time and in any tree Ti the (unique) path

from i to any vertex j is the shortest path between them.

Given the collection of breadth-first search trees the distance

matrix can be computed in O (n2) time by assigning level
numbers to the vertices in each tree. The class of algorithms

of Dijkstra, Floyd- Warshall and Johnson solve all-pair

shortest paths in O (n3), where as in randomized its O (MM

(n) log2n). [15].

5. CONCLUSION AND FUTURE

SCOPE
There are many problems whose deterministic algorithm is

available but still there is scope to find the randomized

algorithm. In case of many randomized algorithm available

the lower bound has been proved but algorithm of that
complexity are not available still there is scope to improve

the gap. There are some problems whose Monte Carlo

algorithm is available the Las Vegas algorithm is not

available and vice-versa. There is still scope to formulate an

algorithm for the all-pairs shortest paths problem that does

not use matrix multiplication and runs in time O (n
3-ε

) for a

positive constant ε. Devising an algorithm for computing the
diameter of an un-weighted graph that does not use matrix

multiplication and runs in time O(n
3-ε

) for a positive constant

ε. Work can be done in devising a simple randomized MST
verification algorithm with expected running time O(n+m).

6. REFERENCES
[1] Donald Knuth.1997 The Art of Computer

Programming, Volume 3: Sorting and Searching, Third

Edition. Addison-Wesley,. ISBN 0-201-89685-0. Pages

113–122 of section 5.2.2: Sorting by Exchanging

[2] Rajeev Motwani and Prabhakar Raghavan: 1996

Randomized Algorithms in ACM Computing Surveys

Vol.28, No.1 Page no 33-37.

[3] Hoare, C. A. R.1961 Partition: Algorithm 63,

Quicksort: Algorithm 64, and Find: Algorithm 65.
Comm. ACM 4(7), 321-322,

[4] Solovay, R. and Strassen, V. 1977. A fast Monte-Carlo

test for primality. SIAM J. Comput. 6, 84–85 & SIAM

J. Comput. 7, 1 (Feb.), 1978, 118.

[5] Karp R.M., Rabin M.O., 1987, Efficient randomized
pattern-matching algorithms. IBM J. Res. Dev.

31(2):249-260.

[6] Carter, Larry; Wegman, Mark N. 1979. Universal

Classes of Hash Functions. Journal of Computer and

System Sciences 18 (2): 143–154.

[7] Freivalds, R. 1977. Probabilistic machines can use less

running time. In Information Processing 77,

Proceedings of IFIP Congress 77, Gilchrist, Ed., (Aug.),

North-Holland, Amsterdam, 839–842.

[8] Yao,A.C-C.1977.Probabilistic computations Towards
a unified measure of complexity. In Proceedings of the

17th Annual Symposium on Foundations of Computer

Science, 222–227.

International Journal of Computer Applications (0975 – 8887)

Volume 28– No.11, August 2011

32

[9] R.W and Rivest 1975. Expected time bounds for

selection. Commun. ACM 18, 165–172.

[10] Snir,M. 1985. Lower bounds on probabilistic linear
decision trees. Theory of Computer Science. 38, 69–82.

[11] Sinclair, A. 1992. Algorithms for Random Generation

and Counting: A Markov Chain Approach. Progress in

Theoretical Computer Science. Birkhauser, Boston.

[12] Wai Ki Ching, Michael K. Ng- 2006 Markov Chains:
Models, algorithm and applications ISBN-10:0-387-

29335-3

[13] Karp, R.M :1991 AN introduction to randomized

algorithm, Discrete Applied Mathematics 165-201.

[14] Jaroslaw Byrka, Aravind Srinivasan, Chaitanya
Swamy: 2010 Fault-Tolerant Facility Location: a

randomized dependent LP-rounding algorithm CoRR

abs/ 1003.1295

[15] Floyd, R.W and Rivest, R.L:1975. Expected time

bounds for selection. Commun. ACM 18, 165–172.

