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ABSTRACT 
Recently the lower bound for integer sorting has considerably 

improved and achieved with comparison sorting  to 

 [1] for a deterministic algorithms or to  

for a radix sort algorithm in space that depends only on the 

number of input integers. Andersson et al. [2] presented 

signature sort in the expected linear time and space which gives 

very bad performance than randomized quick sort. We earlier 

presented in [14] that performance of signature sort can be 

enhanced using hashing and bitwise operators. This paper gives 

the implementation of that idea and later we have compared the 

performance of algorithm with existing randomized signature 

sort and randomized quick Sort. 
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1. INTRODUCTION 

The lower bound  given by Andersson et al. 

uses  extra memory. Later on, Yijie Han also improved the 

lower bound to   with linear space. And he then 

introduced to a new lower bound of  with linear 

space. 

Using randomization the lower bound for deterministic 

algorithms can be optimized further as Andersson et al. 

presented a concept which takes  and linear 

space. Later on, he came up with signature sort with expected 

linear time and space. But the relative performance of signature 

sort with traditional deterministic sorting algorithms is very 

poor. 

The Randomized Signature Sorting algorithm works in two 

phases: One of the phases is Word Formation phase, packs 

multiple integers into a single machine word to sort quickly by 

operating on multiple integers with a single instruction. Another 

Phase is Comparison Sorting i.e. Sorting between words and 

Sorting within words, discussed later. To accomplish linear time 

sorting of n integers requires to pack  of 

integers into one machine word. 

The existing signature sort divided integers into fields and then 

packs them into different words to perform packed sorting. This 

concept consumes lot of running time of computer as integers 

must be divided into fields and then each field must be packed 

into different word. After that comparison is performed and 

based upon that the sorted list is generated. As we can see this 

signature sort requires lot of extra operation. 

In this we have discussed the concept as well as the results from 

the implementation of improved randomized signature sort 

which reduces the extra operation required by the signature sort. 

Instead of dividing integer into fields we hash each integer into 

signature which is only  bit size long. It reduces the 

requirement of dividing integers into field as integer has only 

one signature of reduced bit size. We can pack multiple 

signatures into one word. In this way, we only use single word 

for multiple integers, instead of using one word for one field of 

integer. Thus, the operation required after this in only 

comparison. 

The Signature Sorting algorithm uses the signatures which are 

computed by applying hash function on the integer i.e. input 

values to reduce the size of the integers being sorted.  

2. SIGNATURES 

The purpose for the creation of signature is to decrease the size 

of integers to be operated upon; signatures have the lesser bit 

size than the original inputs. The signatures are computed for 

each input with a universal hash function. Such signatures must 

have the size of O(log n) where n is the number of input 

integers. These signatures are created by applying hash function 

on the input integers. The signatures created with this method 

must follow the property:  

If   then 

            ∈    

Where ’s are the input integers, ’s the corresponding 

signatures and  is the number of input integers [14]. 

3. HASHING 
The hash function is applied on integers to reduce their size by 

creating signatures of bit size. The hash function must 

provide collision free hashing to ensure accurate and better 

result. The hash function must take expected time. This 

will improve the overall performance of algorithm. We are 

implementing the following has function from [13] that is used 

for hashing of integers into signatures. Division must be avoided 

in hash function for better performance. The hash function is,

  

Where,  is the number of bits in the input integer,  is the 

number of bits in the signature which will 
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be  . a is randomly 

chosen between zero and .   

Since the division in the above function is division by a power 

of two, it can be implemented as a left shift. This function will 

take time. The above said hash function assures 

bit size of signatures and also collision free result [13]. 

4. WORD FORMATION 
In Andersson’s concept integers are divided into fields and each 

of these fields is packed into words. This is a bit of overhead as 

each field of integers is required to be packed and compared. We 

are using improved concept of word formation using hashing 

[14]. As discussed above hash function will hash whole integer 

into a signature with reduced bit size of . After that the 

packing of multiple signatures into one word will be done. 

It is an important phase as multiple integers i.e. signatures 

(hashes) of integers will be packed in a word. We must ensure 

that this phase runs error free while implementing. 

If w is word size of the machine, sb is the number of bits in the 

signature, wl is the word length, m is the number of words, l is 

the number of signatures in a word and n is the number of input 

integers then: 

 

 

There will  number of words be created 

overall [14]. The word formation phase will take  time 

[14]. The following pseudo code is for word formation: 

Word[] and Sign[] are the array of words and array of signatures 

respectively. 

Step 1: Repeat for i=1 to m by 1. 

Step 2: Repeat for j=1 to L by 1 

Step 3: word[i] = (word[i])<<sb) | sign[i * l + j] 

Step 4: Return. 

 

5. COMPARISON SORTING 
 In this phase, actual sorting will be implemented. Here sorting 

means exchanging the positions of the signatures from one word 

to another word and also exchanging positions within word 

itself. The whole sorting procedure is divided into two sub-

phases.  

The first sub-phase is sorting between words. The sorting 

between words includes applying XOR and AND in such a way 

that the result will show which signatures need to be swapped. 

First, we will apply XOR on words and then apply XOR and 

AND operators on result with the word in which we want 

smallest of this signatures [14]. This operation will give non-

zero value on corresponding bits where signatures are needed to 

be swapped. Later we will swap those signatures again using 

XOR operator. The overall expected time for this sub-phase is 

only This is pseudo code for the first sub-phase:This 

function will take two words as input and sort them. Let the two 

words be x and y. 

Sort(x,y) 

Step1: Set temp= x XOR y. 

Step2: Set temp= temp XOR x. 

Step3: Set temp= temp AND y. 

Step4: For all non-zero signatures in temp, swap the      

corresponding signatures in x and y. 

Step 5: Return. 

 

After first sub-phase the words will be in sorted order with each 

other, but there are multiple signatures in every word, hence we 

need to perform sorting within word itself. We will perform this 

comparison by recursively dividing a word into 2 halves until 

reaches to single signature in a half [14]. The expected time for 

this sub-phase will be O (log m) [14]. 

The algorithm for comparison within word is given as follows: 

Step 1: Repeat for i=1 to log l. 

Step 2: Divide word into 2i parts. 

Step 3: call sort () for each adjacent parts i.e. 1st, 2nd, 3rd, 4th and 

so on. 

Step 4: Return. 

 

6. UNPACKING 
The unpacking implies when the sorting has been done there is a 

need to get back the original input integers from the sorted 

signatures. In order to perform this task there are two ways: one 

possible way is to keep track using index and another is to create 

reverse hash function. During the implementation of improved 

randomized signature sort we have promoted the usage of 

indexing. The indexes are swapped as the signatures are 

swapped therefore it’s easier to sort the signatures and get back 

the original input.  

 

Unpacking also calls for new techniques like reverse hash 

function. Reverse hash function can make it faster as in order to 

retain the sorted list, there is no need to maintain ranks or 

indexing would be required. This task might be tedious but very 

useful. 

 

7. PERFORMANCE ANALYSIS 
In this section we will compare the performance of Improved 

randomized Signature Sort with the Existing Signature Sort as 

well as Quick Sort. The comparison includes the CPU running 

time and the memory requirement. We are using 32-bit integers 

as input and 64-bit long data type provided by Java to store 

words. The input integers are generated using random function 

and stored in a file. The implementation of algorithms is done in 

Java6.0 on Eclipse-IDE using OOP approach. The platform used 

is Intel 64-bit with Core i3 processor having a frequency of 2.40 

GHz with Windows 7(64-bit) Enterprise Edition running on it. 

The System had a RAM of 3GB. While measuring the 
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performance i.e. collecting the details all other processes were 

terminated.  

Runtime Comparison: The runtime of the algorithm is measured 

as CPU milliseconds using currentTimeMillis() which is 

provided by the System Class. The running time includes 

reading input from a file and writing output to output file. The 

runtime also includes hashing of integers into signatures, 

packing of signatures into words and extracting signatures from 

words. The table 1 shows the data collected of running time of 

algorithms.  

Table 1. CPU Runtime Comparison 

N Existing RSS Quick sort Improved RSS 

50 1 1 1 

100 2 4 5 

200 4 15 11 

300 12 16 16 

400 18 17 22 

500 24 18 31 

600 32 20 32 

700 40 22 32 

800 54 25 44 

900 59 29 46 

1000 76 31 47 

2000 206 52 94 

4000 623 83 234 

 

 
 

Figure 1 Runtime plot of Improved Randomized Signature 

Sort 

 

The above figure 1 shows that the graph when plotted between 

CPU time in Milliseconds and number of input integers grows 

close to linear. As the input size increases the CPU time also 

increases proportionally.  

 
Figure 2: Comparison of Runtime 

 

Whereas if we look at above figure 2 we can see the 

comparative performance with respect to running time of 

existing Randomized signature Sort, Quick Sort and Improved 

Randomized Signature sort 

Memory Comparison: We ran the randomized Signature Sort 

algorithms on a variety of input sequences to compare its 

performance of memory requirement to Quick sort. We 

measured the memory consumed for different inputs by looking 

the values corresponding to the process ‘javaw.exe’ as the 

algorithms is run in Java language. 
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The table 2 listed the data collected of memory required for both 

Quick sort as well as Improved Randomized Signature Sort: 

Table 2. Memory Comparison 

N Quick sort Improved RSS 

50 4192 4280k 

100 4252 4300k 

200 4768 4796k 

300 4864 4808k 

400 4884 4848k 

500 4908k 4948k 

600 4912k 4964k 

700 4940k 4988k 

800 4968k 5012k 

900 5024k 5036k 

1000 5052k 5060k 

2000 5244k 5284k 

4000 5644k 5692k 

 

 

Figure 3: Memory Requirement of MRSS 

The above graph depicts that as the input sequence lengths 

increases the amount of memory required is also increases 

considerably. As the input size grows, the graph for improved 

randomized signature sort appears to take nearly linear memory 

size. 

 

Figure 4: Comparison of Memory Requirement 

The above figure 4 shows the performance of both improved 

randomized signature sort and the Quick sort.  As the input size 

grows, the graph for both algorithms also grows close to each 

other. The difference between the two is minimal thus we can say 

that existing randomized signature sort has been improved 

considerably depleting the large difference of performance 

compared to Quick Sort. 

8. CONCLUSION  
We finally come up with implementation of improved 

randomized signature sort, which is not only stable but better in 

performance. With new algorithm to perform randomized 

signature sort, number of comparisons also have been reduced as 

there is no need to consider each integer for comparison for 

lesser number of time than Existing randomized signature sort. 

As in the existing one, integers were divided into fields and each 

field had to be considered for comparison operation, which 

overall acted like an overhead on the algorithm. Hence by 

reducing the number of comparison to be performed, algorithm 

for improved randomized signature sort runs more efficiently. 

The implementation of algorithm gives expected time 

which uses only linear space. The actual running time of this 

variant is comparatively very low than existing signature sort. 

But still slightly less efficient than randomized quick sort. The 

use of bitwise operators and hashing has improved the 

performance of sorting algorithm significantly. There is a scope 

to improve it to make its performance more close to traditional 

Quick Sort. 
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