
International Journal of Computer Applications (0975 – 8887)

Volume 23– No.6, June 2011

1

Randomized Signature Sort: Implementation &
Performance Analysis

Tamana Pathak
Department of computer Science

and Engineering,
Thapar University, Patiala,

Punjab, India

 Dr. Deepak Garg
Department of computer Science

and Engineering,
Thapar University, Patiala,

Punjab, India

ABSTRACT
Recently the lower bound for integer sorting has considerably

improved and achieved with comparison sorting to

 [1] for a deterministic algorithms or to

for a radix sort algorithm in space that depends only on the

number of input integers. Andersson et al. [2] presented

signature sort in the expected linear time and space which gives

very bad performance than randomized quick sort. We earlier

presented in [14] that performance of signature sort can be

enhanced using hashing and bitwise operators. This paper gives

the implementation of that idea and later we have compared the

performance of algorithm with existing randomized signature

sort and randomized quick Sort.

General Terms
Algorithms, Complexity.

Keywords
Randomized algorithms; Integer Sorting; Linear Complexity.

1. INTRODUCTION

The lower bound given by Andersson et al.

uses extra memory. Later on, Yijie Han also improved the

lower bound to with linear space. And he then

introduced to a new lower bound of with linear

space.

Using randomization the lower bound for deterministic

algorithms can be optimized further as Andersson et al.

presented a concept which takes and linear

space. Later on, he came up with signature sort with expected

linear time and space. But the relative performance of signature

sort with traditional deterministic sorting algorithms is very

poor.

The Randomized Signature Sorting algorithm works in two

phases: One of the phases is Word Formation phase, packs

multiple integers into a single machine word to sort quickly by

operating on multiple integers with a single instruction. Another

Phase is Comparison Sorting i.e. Sorting between words and

Sorting within words, discussed later. To accomplish linear time

sorting of n integers requires to pack of

integers into one machine word.

The existing signature sort divided integers into fields and then

packs them into different words to perform packed sorting. This

concept consumes lot of running time of computer as integers

must be divided into fields and then each field must be packed

into different word. After that comparison is performed and

based upon that the sorted list is generated. As we can see this

signature sort requires lot of extra operation.

In this we have discussed the concept as well as the results from

the implementation of improved randomized signature sort

which reduces the extra operation required by the signature sort.

Instead of dividing integer into fields we hash each integer into

signature which is only bit size long. It reduces the

requirement of dividing integers into field as integer has only

one signature of reduced bit size. We can pack multiple

signatures into one word. In this way, we only use single word

for multiple integers, instead of using one word for one field of

integer. Thus, the operation required after this in only

comparison.

The Signature Sorting algorithm uses the signatures which are

computed by applying hash function on the integer i.e. input

values to reduce the size of the integers being sorted.

2. SIGNATURES

The purpose for the creation of signature is to decrease the size

of integers to be operated upon; signatures have the lesser bit

size than the original inputs. The signatures are computed for

each input with a universal hash function. Such signatures must

have the size of O(log n) where n is the number of input

integers. These signatures are created by applying hash function

on the input integers. The signatures created with this method

must follow the property:

If then

 ∈

Where ’s are the input integers, ’s the corresponding

signatures and is the number of input integers [14].

3. HASHING
The hash function is applied on integers to reduce their size by

creating signatures of bit size. The hash function must

provide collision free hashing to ensure accurate and better

result. The hash function must take expected time. This

will improve the overall performance of algorithm. We are

implementing the following has function from [13] that is used

for hashing of integers into signatures. Division must be avoided

in hash function for better performance. The hash function is,

Where, is the number of bits in the input integer, is the

number of bits in the signature which will

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.6, June 2011

2

be . a is randomly

chosen between zero and .

Since the division in the above function is division by a power

of two, it can be implemented as a left shift. This function will

take time. The above said hash function assures

bit size of signatures and also collision free result [13].

4. WORD FORMATION
In Andersson’s concept integers are divided into fields and each

of these fields is packed into words. This is a bit of overhead as

each field of integers is required to be packed and compared. We

are using improved concept of word formation using hashing

[14]. As discussed above hash function will hash whole integer

into a signature with reduced bit size of . After that the

packing of multiple signatures into one word will be done.

It is an important phase as multiple integers i.e. signatures

(hashes) of integers will be packed in a word. We must ensure

that this phase runs error free while implementing.

If w is word size of the machine, sb is the number of bits in the

signature, wl is the word length, m is the number of words, l is

the number of signatures in a word and n is the number of input

integers then:

There will number of words be created

overall [14]. The word formation phase will take time

[14]. The following pseudo code is for word formation:

Word[] and Sign[] are the array of words and array of signatures

respectively.

Step 1: Repeat for i=1 to m by 1.

Step 2: Repeat for j=1 to L by 1

Step 3: word[i] = (word[i])<<sb) | sign[i * l + j]

Step 4: Return.

5. COMPARISON SORTING
 In this phase, actual sorting will be implemented. Here sorting

means exchanging the positions of the signatures from one word

to another word and also exchanging positions within word

itself. The whole sorting procedure is divided into two sub-

phases.

The first sub-phase is sorting between words. The sorting

between words includes applying XOR and AND in such a way

that the result will show which signatures need to be swapped.

First, we will apply XOR on words and then apply XOR and

AND operators on result with the word in which we want

smallest of this signatures [14]. This operation will give non-

zero value on corresponding bits where signatures are needed to

be swapped. Later we will swap those signatures again using

XOR operator. The overall expected time for this sub-phase is

only This is pseudo code for the first sub-phase:This

function will take two words as input and sort them. Let the two

words be x and y.

Sort(x,y)

Step1: Set temp= x XOR y.

Step2: Set temp= temp XOR x.

Step3: Set temp= temp AND y.

Step4: For all non-zero signatures in temp, swap the

corresponding signatures in x and y.

Step 5: Return.

After first sub-phase the words will be in sorted order with each

other, but there are multiple signatures in every word, hence we

need to perform sorting within word itself. We will perform this

comparison by recursively dividing a word into 2 halves until

reaches to single signature in a half [14]. The expected time for

this sub-phase will be O (log m) [14].

The algorithm for comparison within word is given as follows:

Step 1: Repeat for i=1 to log l.

Step 2: Divide word into 2i parts.

Step 3: call sort () for each adjacent parts i.e. 1st, 2nd, 3rd, 4th and

so on.

Step 4: Return.

6. UNPACKING
The unpacking implies when the sorting has been done there is a

need to get back the original input integers from the sorted

signatures. In order to perform this task there are two ways: one

possible way is to keep track using index and another is to create

reverse hash function. During the implementation of improved

randomized signature sort we have promoted the usage of

indexing. The indexes are swapped as the signatures are

swapped therefore it’s easier to sort the signatures and get back

the original input.

Unpacking also calls for new techniques like reverse hash

function. Reverse hash function can make it faster as in order to

retain the sorted list, there is no need to maintain ranks or

indexing would be required. This task might be tedious but very

useful.

7. PERFORMANCE ANALYSIS
In this section we will compare the performance of Improved

randomized Signature Sort with the Existing Signature Sort as

well as Quick Sort. The comparison includes the CPU running

time and the memory requirement. We are using 32-bit integers

as input and 64-bit long data type provided by Java to store

words. The input integers are generated using random function

and stored in a file. The implementation of algorithms is done in

Java6.0 on Eclipse-IDE using OOP approach. The platform used

is Intel 64-bit with Core i3 processor having a frequency of 2.40

GHz with Windows 7(64-bit) Enterprise Edition running on it.

The System had a RAM of 3GB. While measuring the

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.6, June 2011

3

performance i.e. collecting the details all other processes were

terminated.

Runtime Comparison: The runtime of the algorithm is measured

as CPU milliseconds using currentTimeMillis() which is

provided by the System Class. The running time includes

reading input from a file and writing output to output file. The

runtime also includes hashing of integers into signatures,

packing of signatures into words and extracting signatures from

words. The table 1 shows the data collected of running time of

algorithms.

Table 1. CPU Runtime Comparison

N Existing RSS Quick sort Improved RSS

50 1 1 1

100 2 4 5

200 4 15 11

300 12 16 16

400 18 17 22

500 24 18 31

600 32 20 32

700 40 22 32

800 54 25 44

900 59 29 46

1000 76 31 47

2000 206 52 94

4000 623 83 234

Figure 1 Runtime plot of Improved Randomized Signature

Sort

The above figure 1 shows that the graph when plotted between

CPU time in Milliseconds and number of input integers grows

close to linear. As the input size increases the CPU time also

increases proportionally.

Figure 2: Comparison of Runtime

Whereas if we look at above figure 2 we can see the

comparative performance with respect to running time of

existing Randomized signature Sort, Quick Sort and Improved

Randomized Signature sort

Memory Comparison: We ran the randomized Signature Sort

algorithms on a variety of input sequences to compare its

performance of memory requirement to Quick sort. We

measured the memory consumed for different inputs by looking

the values corresponding to the process ‘javaw.exe’ as the

algorithms is run in Java language.

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.6, June 2011

4

The table 2 listed the data collected of memory required for both

Quick sort as well as Improved Randomized Signature Sort:

Table 2. Memory Comparison

N Quick sort Improved RSS

50 4192 4280k

100 4252 4300k

200 4768 4796k

300 4864 4808k

400 4884 4848k

500 4908k 4948k

600 4912k 4964k

700 4940k 4988k

800 4968k 5012k

900 5024k 5036k

1000 5052k 5060k

2000 5244k 5284k

4000 5644k 5692k

Figure 3: Memory Requirement of MRSS

The above graph depicts that as the input sequence lengths

increases the amount of memory required is also increases

considerably. As the input size grows, the graph for improved

randomized signature sort appears to take nearly linear memory

size.

Figure 4: Comparison of Memory Requirement

The above figure 4 shows the performance of both improved

randomized signature sort and the Quick sort. As the input size

grows, the graph for both algorithms also grows close to each

other. The difference between the two is minimal thus we can say

that existing randomized signature sort has been improved

considerably depleting the large difference of performance

compared to Quick Sort.

8. CONCLUSION
We finally come up with implementation of improved

randomized signature sort, which is not only stable but better in

performance. With new algorithm to perform randomized

signature sort, number of comparisons also have been reduced as

there is no need to consider each integer for comparison for

lesser number of time than Existing randomized signature sort.

As in the existing one, integers were divided into fields and each

field had to be considered for comparison operation, which

overall acted like an overhead on the algorithm. Hence by

reducing the number of comparison to be performed, algorithm

for improved randomized signature sort runs more efficiently.

The implementation of algorithm gives expected time

which uses only linear space. The actual running time of this

variant is comparatively very low than existing signature sort.

But still slightly less efficient than randomized quick sort. The

use of bitwise operators and hashing has improved the

performance of sorting algorithm significantly. There is a scope

to improve it to make its performance more close to traditional

Quick Sort.

9. REFERENCES

[1] Yijie Han and Mikkel Thorup. Integer sorting in

 expected time and linear space. In

IEEE Symp. on Foundations of Computer Science, volume

43, 2002.

International Journal of Computer Applications (0975 – 8887)

Volume 23– No.6, June 2011

5

[2] Andersson, Hagerup, Nilsson, and Raman. Sorting in linear

time? In STOC: ACM Symposium on Theory of Computing

(STOC), 1995.

[3] D. Kirkpatrick and S. Reisch. Upper bounds for sorting

integers on random access machines. 1984.

[4] M. L. Fredman and D. E. Willard. Surpassing the

information theoretic bound with fusion trees.1993.

Announced at STOC’90.

[5] W. Paul and J. Simon. Decision trees and random access

machines. In Proc. Symp. ¨uber Logik and Algoritmik,

1980.

[6] L. J. Comrie. The hollerith and powers tabulating

machines.Trans. Office Machinary Users’ Assoc., Ltd,

1929-30.

[7] A. I. Dumey. Indexing for rapid random access memory

systems. Computers and Automation, 1956.

[8] Mikkel Thorup. Randomized sorting in O (n log log n)

time and linear space using addition, shift, & bit-wise

boolean operations.

[9] Y. Han: Deterministic Sorting in O (n log log n) Time and

Linear Space, J. Algorithms 50(1): 2004.

[10] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein:

Introduction to Algorithms, Second Edition, The MIT Press

and McGraw-Hill Book Company2001.

[11] S. Cook and R. Reckhow. Time-bounded random access

machines. J. Comp. Syst. Sc., 10(2):1973.

[12] M. Dietzfelbinger, T. Hagerup, J. Katajainen, M.

Penttonen, A reliable randomized algorithm for the closest-

pair problem, J. Algorithms 25 (1997).

[13] B. Vandiver, A.Rolfe, Exploiting sleight-of model to

achieve super-luminal sorting: 2003

[14] T. Pathak, D. Garg, Improving performance of Randomized

Signature Sort using hashing and Bitwise operators, JGRCS

Vol 2 No 3, 2011.

