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Abstract: 

The problem of selecting up to a fixed number of customers from among a given number of 

potential sites for clustering a given number of sites to them subject to several constraints with 

two objectives, is considered. One of the constraints is that each site should be clustered to a 

unique customer which is selected for locating a site at it; however there is no restriction on the 

number of sites to be clustered to a selected site. The two objectives are to minimize the total 

cost and duration of meeting requirements of all the sites from their assigned customers at the 

selected sites. A net benefit heuristic algorithm (NBHA) incorporating tabu search is developed 

to find the set of efficient solutions of this problem. 

Keywords: Efficient solution, Heuristic programming, Tabu search, clustering, facility location, 

heuristics. 

1. Introduction  

 In this paper, we consider the un-capacitated facility location problem. In this problem, facilities 

are placed among n possible sites with the objective of minimizing the total cost for satisfying all 

demands at m given locations. The total cost consists of fixed charges for establishing facilities 

and costs for fulfilling the demands (distribution costs).  

                      The un-capacitated facility location problem (UFLP) has been dealt with in the 

literature under several titles. This includes (un-capacitated, simple, optimal) followed by (plant, 

warehouse, facility, site), followed by the word (location) (Krarup and Pruzan [24]). UFLP is a 

simple mixed integer programming problem, yet it exhibits all the typical combinatorial 

difficulties of mixed (0–1) programming, but its special structure allows the development of 

specialized techniques for solving it (Guignard and Spielberg [17]). UFLP is an NP-hard 

problem (Garey and Johnson [12], Lenstra and Rinnooy Kan [25]).  

                The un-capacitated facility location problem has been extensively considered in the 

literature (see Krarup and Pruzan [24], Cornuéjols et al. [7] for comprehensive literature 

reviews). The first explicit formulation of UFLP is attributed to Balinski [1]; however, there 

seems to be some confusion on the part of some researchers which resulted in an obscure history 



of UFLP and incorrect references to it. Krarup and Pruzan [24] very carefully followed the origin 

of UFLP. Efroymson and Ray [8] proposed a modified formulation of the problem and the use of 

a branch and bound algorithm to solve it. Khumawala [22] utilized the special structure of UFLP 

to improve the branch and bound algorithm of Efroymson and Ray. Bilde and Krarup [4] and 

Erlenkotter [9] developed a dual-based branch and bound procedure for the problem. Their 

procedure has been widely accepted as the most efficient known procedure for solving UFLP. 

Guignard [16] proposed to strengthen the separable Lagrangian relaxation of UFLP by using 

Benders inequalities generated during a Lagrangian dual ascent procedure. He showed that 

coupling his technique with a good primal heuristic can substantially reduce the integrality gap. 

Tcha et al. [29] developed a dual-based heuristic for this problem which is similar to 

Erlenkotter’s procedure, and claimed that it yields solutions which are, in most of the cases, 

superior to those achieved by the dual ascent procedure with only a slight increase in 

computation time. Galvao and Raggi [10] proposed an optimal procedure for solving a more 

general formulation which has UFLP as a special case. Körkel [23] showed how to modify a 

primal–dual version of Erlenkotter’s exact algorithm to get an improved procedure. He claimed 

that an implementation of the modified algorithm is faster than Erlenkotter’s code by more than 

one order of magnitude. Simao and Thizy [26] developed a dual simplex algorithm for the 

canonical representation of this problem. Conn and Cornuéjols [6] suggested a new method for 

solving UFLP based on the exact solution of the condensed dual of the strong linear 

programming relaxation for UFLP via orthogonal projections. Beasley [3] proposed Lagrangian 

heuristics for several location problems which includes UFLP. His results indicated that his 

proposed approach is robust for solving different location problems. Gao and Robinson [11] 

presented a general model and dual-based branch and bound solution procedure to find optimal 

solutions for several un- capacitated location problems that include UFLP. They claimed that 

their proposed solution procedure effectively solves realistically sized UFLP. 

         In this paper, we present a tabu search based algorithm for solving the problem discussed 

above. The paper is organized as follows: the problem statement is given in section 2. In section 

3, we give a brief introduction to tabu search. The proposed algorithm is stated in section 4. 

Computational results and discussion are presented in section 5. Finally, conclusions are given in 

section 6.  

 



 
2. Problem statement 
The un-capacitated facility location problem (UFLP) can be stated as follows: 

Given n possible sites and demands at m locations, determine the optimal location of facilities to fulfil all 

demands such that the total cost of establishing the facilities and fulfilling the demands (distribution cost) 

is minimized and duration is maximized and vice versa. 

Formulation of problem:  

 Suppose that there are N possible sites and demands at M locations, every site can be selected 

from among the N potential sites for locating customers at them. The N sites are to be clustered 

up to one or more sites in such a way that each shop is assigned to a unique site which is selected 

for locating a customer. There is no restriction on the number of site to be clustered to a selected 

customer. Let ijc and ),,2,1;,,2,1( NjMitij    units be the cost and time respectively of 

meeting requirements of site i  from customer j . Let jc units be the setup cost of a customer at 

the customer j only. Let ijx be the variable assuming value 0 or 1 according as site i  is not 

assigned or assigned to customer j , and jy be the variable assuming the value 0 or 1 according 

as customer j  is not selected or selected for locating a customer at it . Let C  and T denote the 

total cost and duration respectively of meeting requirements of all the sites from their assigned 

customers. The mathematical formulation of this problem is as follows. The two objective 

functions which are sought to be minimized as well as maximized. 

Minimized      ∑ ∑   
   

 
   ij +∑   

   iyi     ………………………………....(1) 

                       NjMixtT ijij ,,2,1;,,2,1:max   …………………..(2)  

Constraints of the problem are ∑    
   ij   = 1   , j=1..m    …………………..(3) 

                                xij  ≤  yi      i=1,…….n,  j=1…….m   …………………..(4) 

                                xij, yi = 0or1, i=1,….n, j=1,….m     ……………………..(5) 

Where Cij = the cost meeting customer j’s demand from facility i ; 

fi = the  cost is established  a facility at site i ; 



xij ={
                                     
                                                             

   

yi= {
                                    
                                                 

 

          Note that the objective functions C  provided by (1) and T provided by (2) are not 

accorded priorities. The constraint (3) ensures that one site can be selected from among the N

possible  sites while constraints (4) and (5) ensure that each site is assigned to a unique site 

which is selected for locating a customer. Note that xij is a binary variable because it is assumed 

that the demand of customer j, j = 1, 2,…,m, is fulfilled by one and only one facility, say k (i.e. 

no partial fulfillment of demand is allowed), in which case xkj = 1, xij = 0, for all i = 1, 2,…, n, i 

≠ k. yi is also a binary variable since a facility i is either established ( yi = 1), in which case the 

fixed charge fi is incurred, or it is not established (yi = 0) and in which case no fixed charge is 

incurred.  

   The UFLP can mathematically be decomposed into two interdependent subproblems: 

1. Location. The facilities to be established are determined here (i.e., yi’s). 

2. Allocation. For those established facilities, determines the distribution pattern (i.e., xij’s). 

     For any solution of the location sub problem, an optimal solution of the allocation sub 

problem is easily obtained. More specifically, for any given y vector, an optimal assignment of 

the xij’s can obtained by using the following formula: 

                         k : min Ckj , k= 1, . . . . . . .n. 

                        xij ={
                        
                       

 

                     Therefore, if yi’s are known, the xij’s can be optimally determined using the above argument. 

Krarup and pruzan[24] presented using a similer argument. We propose using the tabu search approach to 

find the optimal set of yi’s . 

3. The tabu search scheme 

       Tabu search is a Meta heuristic that guides local heuristic search procedures to explore the 

solution space beyond local optimality. It was introduced by Glover [13–15] specifically for 

combinatorial problems. Its basic ideas have also been proposed by Hansen [18] and Hansen and 



Jaumard [19] with another name, “steepest ascent mildest descent”. Since then, tabu search has 

successfully been applied to a wide range of problem settings. For example, tabu search has been 

applied to flow shop scheduling (Widmer and Hertz [30], Taillard [28]), architectural design 

(Bland and Dawson [5]), the time tabling problem (Hertz [20]), the interacting hub facilities 

location problem (Skorin-Kapov and Skorin-Kapov [27]), among others. 

Tabu search is different from well-known hill-climbing local search techniques in the sense that 

it does not become trapped in local optimal solutions. This is due to the fact that tabu search 

allows moves out of a current solution which makes the objective function worse, in the hope 

that they might lead to a better solution.  

The tabu search technique requires the following basic elements to be defined: 

• Configuration is a solution or an assignment of values to variables. 

• A move describes the process of generating a feasible solution to the combinatorial problem that is 

related to the current solution (i.e. a move is a procedure that describes how a new (trial) solution can be 

generated from the current one). 

• Set of candidate moves is the set of all possible moves out of a current configuration. 

• Tabu restrictions: This element is what distinguishes tabu search from other techniques. Tabu 

restrictions can be described as certain conditions imposed on moves which make some of them 

forbidden. These forbidden moves are known as tabu. It is done by forming a list of a certain size (called 

tabu list) that records these forbidden moves. 

• Aspiration criteria: These are rules that override tabu restrictions, i.e. if a certain move is forbidden by 

tabu restriction, then the aspiration criterion, when satisfied, can make this move allowable . 

            Given the above basic elements, the tabu search scheme can be described as follows: start with a 

certain (current) configuration (i.e. initial solution), and evaluate the objective function for that 

configuration. Then, generate a certain set of candidate moves from the current configuration (if this set is 

too large, one could operate with a subset of it). If the best of these moves is not tabu or if the best is tabu 

but satisfies the aspiration criterion, then pick that move and consider it to be the new current 

configuration; otherwise, pick the best move that is not tabu and consider it to be the new current 

configuration. Repeat the procedure for a certain number of iterations. On termination, the best solution 

obtained so far is the solution obtained by the algorithm. 

 Note that the move that is picked at certain iteration is put on the tabu list so that it is not allowed to be 

reversed in the next little iteration. The taboo list has a certain size, and when the length of the tabu list 

reaches that size and a new move enters that list, then the first move on the tabu list is freed from being 

tabu and the process continues (i.e. the tabu list is circular). The size of the tabu list can be used to control 



the intensity of the search, as will be seen later in section 5.3. The aspiration criterion can be taken as the 

value of the objective function, i.e., if the tabu move results in a value of the objective function that is 

better than the best known so far, then the aspiration criterion is satisfied and the tabu restriction is 

overridden by this.  

              In the above paragraph, we have outlined the basic steps of the tabu search procedure for solving 

combinatorial optimization problems. For a more complete description of this method, interested readers 

can refer to the papers of Glover [14, 15]. 

4. The proposed algorithm 

                As explained in section 2, we will concentrate on the location sub problem since it is the hard 

part of the problem to solve. Our proposed algorithm uses the tabu search technique to generate a set of 

y’s and for every y, we use the argument in section 2 to get the optimal allocation (i.e., xij’s). The 

algorithm can be summarized as follows: use any heuristic to get an initial solution (i.e., y) (one can also 

use a random starting solution, or use the net benefit heuristic proposed below). Compute its total cost, 

and store it as the best solution so far. Using this solution, generate a set of neighboring y’s. For every y, 

find the optimal allocation (i.e. xij’s) by the argument in section 2, and find the resulting total cost. Then 

the best improving y (or best non-Tabu if no improving y is found) is selected and its associated attribute 

is stored in the Tabu list. This procedure is repeated and controlled by tabu search until a predetermined 

number of iterations have been performed. 

4.1. The net benefit heuristic (NBH) 

         To start the Tabu search algorithm, one needs to have an initial starting solution. It is preferred that 

this initial solution is of good quality and requires little computation time. 

          The NBH consists of two phases: the initial phase and the refinement phase. The initial phase 

proceeds as follows: for every demand j, j = 1, 2,…,m, find the facility that can supply this demand at the 

cheapest transportation cost (i.e. find i* such that ci*j = min1i ncij , and establish this facility if it has not 

already been established). The result of the initial phase is the establishment of a certain number of 

facilities that will satisfy all demands (this of course constitutes an upper bound on the optimal solution). 

              The refinement phase is a procedure in which each facility that was established in the initial 

phase is investigated for possible closure, whereby a facility is closed if this can result in a net saving. 

This happens when the saving due to the closure of the facility (i.e. the fixed charge) is higher than the 

extra distribution cost incurred by allocating the demand originally allocated to this facility to the next 

cheapest established facility. 



  The NBH as shown in section 5.5 is very good in generating a good initial solution (i.e. 18.6% above the 

optimal on average) using a quite small running time. The NBH is stated below. 

The NBH algorithm 

Initial phase 

Step 1:For each demand j, j = 1, 2,…, m, find the facility that can supply this demand 

            at the cheapest distribution cost and denote it by i *. 

            For all j, j = 1,…, m, 

let Ci* j = min1 i nCij , and form the set V of ordered pairs, V = {(i*, j)}. 

Step 2: Form the set I from V by extracting the first index. This is the list of facilities 

  suggested for establishment. 

  Let I = {i * : (i*, j)  V}. 

Step 3: Evaluate the current solution which constitutes an upper bound one (UB1) on the 

optimal solution. 

Calculate UB 1 =   ∑         ij xij + ∑     iyi    

Step4:  Evaluate the current solution which constitutes an upper bound two (UB2) on the  

            optimal  solution 

Calculate UB2 = ∑         ijxij                                

Refinement phase 

Step 1: Set k = 1, let m* = │I│ or m* is the number of established facilities at the 

Initial phase. 

Step 2: Consider the kth facility established in the initial phase. 

Let i be the kth element in I. 



Step 3: Let the set J be the indices of all those demands currently satisfied by facility i. 

Let J = { j│(i, j)  V}. 

Step 4: Repeat for all facilities established step 5, 6, 7 

Step 5: For each demand currently satisfied by facility i, find which established facility   

           Other than i can satisfy this demand at minimum distribution cost 

and compute the extra cost due to this reallocation. 

For each j J, calculate dj = Clj – Cij, where Clj = min Ctj, t   I and t   . 

 

Step 6:   Compute the extra cost which is equal to the cost of reallocation of demands 

              Currently satisfied by facility i, less the saving due to the closure of facility i. 

              Calculate ∑     j -fi   create the array and calculate the maximum in the array. 

                                            Max =│   │ 

Step 7:  If the extra cost computed in step 5 is negative (i.e. benefit), then it is better 

            To close the facility (step 8), otherwise, consider the next facility (step 9). 

              If < 0, go to step 8; otherwise go to step 9. 

Step 8(a):  I = I – {i}. UB1 = UB1 – ││. If   │I│= 1, stop; otherwise go to step 1. 

 Step 8(b):  I = I – {i}. UB2 = UB2 – ││. If   │I│= 1, stop; otherwise go to step 1. 

Step 9: If k = m*, stop; otherwise, set k = k + 1 and go to step 2. 

              Next, we formally present the proposed algorithm. 

Statement of the un-capacitated facility location tabu search algorithm (UFLTSA) 

Initialization step 



Choose nbhsize (the size of the neighborhood). Choose a suitable size for the tabu list, TL. Choose 

ITERMAX (the maximum number of non improving iterations) (see section 5.3 for a description of these 

parameters as well as suitable values for them).  

Use the NBH algorithm to get an initial y. Let ycurrent = y, ymin = y, ybest = y. 

Let totcost( y) be the total cost of y. 

Let TL =  , BV = totcost( y). 

Let k = 1 and go to the main step. 

Main step 

Step 1 . Generate nbhsize random solutions from ycurrent. Each solution is evaluated and the solution with 

the minimum total cost among the generated solutions is selected as ymin. 

min =  . 

For h = 1 to nbhsize, do 

Obtain y from ycurrent (see section 5.1). 

For every j, j = 1,…, m, find k : mink Ckj, k = 1,…, n. 

Let xkj = 1, xij = 0, for i =1,…, n, i ≠ k. 

Evaluate totcost( y). 

If totcost( y) < min, then min = totcost( y), ymin = y. 

Step 2 . Check tabu status. 

            Check whether or not the solution ymin found in step 1 is in the tabu list. 

          2.1. l = 1. 

           2.2 If ( ymin TL) or ( ymin TL and min < BV), then go to step 3; otherwise, 

                  replace l by l + 1. Let the lth best solution be ymin (i.e. this is the best 

                  solution among all generated solutions in this iteration excluding those 



                   Considered earlier in this step) and repeat this step. 

Step 3: Update current solution. 

             Replace the current solution by the new solution ymin, and the best objective 

             function (BV) by min. Store ymin in the tabu list. 

               Let ycurrent = ymin. 

              Store ymin in TL (see section 5.2). 

              If min ≥ BV, then go to step 4; otherwise, BV = min, k = 0, and go to step 4. 

Step 4: Check stopping criterion. 

             If the stopping criterion is satisfied, stop; otherwise, perform anotheriteration. 

              If k = ITERMAX, go to step 5; otherwise, replace k by k + 1, and go to step 1. 

Step 5: Stop, and report the results. 

           Stop. ybest is the best solution found, and the corresponding total cost is BV. 

Step 6: find t for   ybest , xbest 

5. Computational results and discussion 

  In this section, we discuss various implementations details and results of our computational 

experiments. 

5.1. Generation of neighbors 

        In our experiments, we used the following scheme for generating a neighbor y
^
 for a given 

location vector y. 

   Let yi be the ith component of the given vector y, where 1 ≤ i ≤  n and n is the number of 

facilities. To generate a neighbor y^, perform the following steps: 

Step 1 . Let a be a given constant, where 0 < a < 1. A is considered a parameter of this scheme, 

and will be called the probability threshold. 

Step 2. Set k = 1. 



Step 3 .Generate a random number, b ÎU(0, 1), where U(0, 1) is the uniform distribution between 

0 and 1. 

Step 4 . If b > a, go to step 5; otherwise, go to step 6. 

Step 5. If YK = 1, set yˆ k = 0, and if yk = 0, set yˆ k = 1; stop. 

Step 6 . If k = n, stop; otherwise set k = k + 1 and go to step 3. 

5.2 Storing in the tabu list 

   In our algorithm, the chosen neighbor (i.e. the move) has to be stored in the tabu list, TL, in 

step 3. This can be achieved by storing the value of the index k at the termination of the above 

scheme for generation of neighbors. 

5.3. Parameter setting 

Tabu search is a parameter-sensitive technique similar to simulated annealing and genetic 

algorithms. As can be seen from the statement of the algorithm, it has the following parameters: 

• The number of random solutions to be generated from the current one, nbhsize. Clearly, the 

larger the value of nbhsize, the better the quality of the solution, but the more computation time 

is needed. Hence, one has to balance these two conflicting objectives. 

• The tabu list size, TL. If TL is large, the many moves are made tabu and hence their reversal is 

forbidden, which makes the search emphasize diversification. When the tabu list size TL is small, 

moves that are made tabu at a certain iteration are allowed to be reversed after few iterations, 

which makes the search emphasize intensification.  

• The probability threshold, . The value of affects the probability assigned to every facility to 

change its status. The higher the value of , the more even is the chance given to facilities 

to change their status.  

• Maximum number of non improving iterations, ITERMAX. This is the maximum number of 

consecutive non improving iterations that the algorithm is allowed to go through before 

termination. Of course, the higher the value of ITERMAX, the better the quality of the solution 

one expects, but of course at the expense of more computation time. We have conducted an 

extensive parametric study on the proposed algorithm. We started this study by testing the 

performance of the algorithm at different values of the four parameters nbhsize, , TL, and 

ITERMAX. Clearly, as one increases the values of nbhsize, and ITERMAX, the quality of the 

solution is expected to improve but, of course, at the expense of more computation time. 

Therefore, one has to strike a balance between these conflicting objectives. 



The results of this study show that the following set of values give the best compromise between 

 n the quality of the solution and the computation time. The higher range values are needed for 

larger problems. They definitely work for all other problems, but they take a little extra time 

compared to using lower range values.  

nbhsize = 5n, 

[0.9,0.95], 

tabu list size, TL [7,15], 

ITERMAX [10,50]. 

5.4. Results and discussion 

Tables 1–3 show the results of our experiments. We coded the proposed algorithm in C++ and 

used an DELL personal computer equipped with intel microprocessor with a speed of 2GHzThe 

following notation is used in tables 1–3. 

Data file = the name of the data file as in the OR Library (Satya Prakash [31]). 

n = number of facilities. 

m = number of potential locations. 

NBH% = the percentage deviation of the NBH solution from optimal. 

NBH-T = the CPU time needed by NBH. 

UFLTSA% = the percentage deviation of the UFLTSA solution from optimal. 

UFLTSA-T = the CPU time needed by UFLTSA. 
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Conclusion: 

 
   A new algorithm for the un-capacitated facility location problem has been presented. The algorithm is 

based on the tabu search technique. Computational results show that our algorithm found the optimal 

solutions for all problems tested. One can extend the work by investigating other features for generating 

the random sequences and by using other elements of tabu search such as long-term memory, strategic 

oscillation, path re linking, among others. One could also improve the performance of the proposed 

heuristic for getting a good initial solution. 

Future scope: 

  We can extend the objective function to multi objectives and improve the steps to solve the 

problem to add budget constraint.   

Complexity: Complexity of this tabu search algorithm is o(n
2
). 
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