
Some Characteristics of Spiking Neural P

Systems with Anti-Spikes

Venkata Padmavati Metta1, Kamala Krithivasan2 and Deepak Garg3

1 Bhilai Institute of Technology, Durg, India
2 Indian Institute of Technology, Chennai, India

3 Thapar University, Patiala, India

Abstract. Spiking neural P(SN P) system with anti-spikes can encode
the binary digits in a natural way using two types of objects called anti-
spikes and spikes. In this paper we use this variant to simulate universal
logic gates and thereby modeling any Boolean circuit. We also use these
systems to perform arithmetic operations like 2’s complement, addition
and subtraction on binary numbers.

1 Introduction

Spiking neural P systems [3] (shortly called SN P systems) are parallel and dis-
tributed computing models inspired by the neurobiological behaviour of neurons
sending electrical pulses of identical voltages called spikes to neighbouring neu-
rons. It is represented as a directed graph where nodes correspond to neurons
having spiking and forgetting rules. The rules involve the spikes present in the
neuron in the form of occurrences of a symbol a. The arcs indicate the synapses
among the neurons. Similar to the neurons in the brain, the neurons in an SN
P system also fire in parallel, with each neuron using only one rule in each step.
The initial configuration of the system is represented by the number of spikes
present in each neuron. One of the neurons is taken as the output neuron, which
sends spikes to the environment. Outputs can be interpreted either as a sequence
of bits called spike train or the number of steps between consecutive spikes sent
out to the environment. In a standard SN P system there is only one type of
objects called spikes which are moved, created and destroyed but never modified
into another form.
SN P system with anti-spikes introduced in [5], is a variant of an SN P system
consisting of two types of objects, spikes (denoted as a) and anti-spikes (de-
noted as a). The inhibitory impulses/spikes are represented using anti-spikes.
The anti-spikes behave in a similar way as spikes by participating in spiking and
forgetting rules. They are produced from usual spikes by means of usual spik-
ing rules; in turn, rules consuming anti-spikes can produce spikes or anti-spikes
(here we avoid the rule anti-spikes producing anti-spike). The SN P system with
anti-spikes consists of an implicit annihilation rule of the form aa → λ; if an
anti-spike and a spike meet in a given neuron, they annihilate each other. This
rule has the highest priority and does not consume any time. SN P system with

anti-spikes allows the modification of spikes and anti-spikes and is proved as
computationally complete.
Standard Spiking neural P systems are used to simulate fundamental gates [4],
with spikes emitting out of the system encoded as 1 and no spike as 0. Boolean
circuits are constructed by using these gates with synchronisation module so
that each subsystem will receive the output at the same time. In this paper,
we use SN P systems with anti-spikes to simulate universal logic gates as the
anti-spike and spike encode Boolean values 0 and 1 in a natural way. The use
of universal gates allows to simulate any Boolean circuit in only two levels, thus
reducing the number of steps required to get the output. It also eliminates the
use of synchronising module.
Standard Spiking neural P systems are also used to simulate arithmetic and
logic operations where the presence of spike is encoded as 1 and the absence of
spike as 0 [1] and the negative integers are not considered. Here we also consider
SN P system with anti-spikes as simple arithmetic device that can perform the
arithmetic operations like 2’s complement, addition and subtraction with input
and output in binary form. The binary sequence of 0’s and 1’s are encoded as
anti-spike and spike respectively and in each time step input is provided bit-
by-bit starting from the least significant bit. They can represent the negative
numbers in 2’s complement form, thereby simulating the arithmetic operations
on negative numbers. In this paper we simulate three arithmetic operations - 2’s
complement, addition and subtraction.

1.1 Notation

We recall here a few definitions and notations related to formal languages and
automata theory.

Σ is a finite set of symbols called an alphabet. A string w over Σ is a sequence
of symbols drawn from Σ. λ or ǫ denotes the empty string. Σ∗ is the set of all
strings over Σ. Σ∗ −{λ} is denoted by Σ+. The length of a string w is denoted
by |w|. A language L over Σ is a set of strings over Σ.

A language L ⊆ Σ∗ is said to be regular if there is a regular expression
E over Σ such that L(E) = L. The regular expressions are defined using the
following rules. (i) φ, λ and each a ∈ Σ are regular expressions. (ii) if E1, E2 are
regular expressions over Σ, then E1+E2, E1 E2 and E∗

1 are regular expressions
over Σ, and (iii) nothing else is a regular expression over Σ. With each regular
expression E, we associate a language L(E).

When Σ = {a} is a singleton, then the regular expression a∗ denotes the set
of all strings formed using a. i.e the set

{

ǫ, a, a2, a3,
}

. The positive closure
a+ = a∗ − {λ}.

2 Spiking Neural P System with Anti-Spikes

We recall the definition of SN P system with anti-spikes without delays.
Definition 2.1 (SN P system with anti-spikes) A spiking neural P system with

anti-spikes of degree m ≥ 1, is a construct

Π=(O, σ1, σ2, σ3 ,. . . , σm , syn , i0), where

1. O = { a, a } is the binary alphabet. a is called spike and a is called anti-spike.
2. σ1, σ2, σ3 ,. . . , σm are neurons, of the form

σi=(ni, Ri) , 1 ≤i≤m,

where
(a) ni is an integer denoting the initial number of spikes or anti-spikes con-

tained by the cell. Neuron σi has ni spikes if ni > 0 or ni anti-spikes if
ni < 0.

(b) Ri is a finite set of rules of the following two forms:
i. E / br → b’ where E is a regular expression over a or a , while b, b′ ∈

{a,a}, and r ≥1.
ii. br → λ, for some r ≥ 1, with the restriction that br /∈ L(E) for any

rule E / br→b’ of type (1) from Ri;
3. syn ⊆ { 1, 2, 3, . . . , m} × { 1, 2, 3, . . . , m} with (i, i) /∈ syn for 1≤ i ≤m

(synapses among cells);
4. i0 ∈ { 1, 2, 3, . . . , m } indicates the output neuron.

The rules of the type E / br → b’ are spiking rules, and are used only if
the neuron contains n spikes such that bn ∈ L(E) and n≥ r. l(v) and r(v) give
the number of spikes/anti-spikes present in the left and right hand sides of rule
v respectively. Further l(E/br → b’) = r if b = a and l(E/br → b’) = −r if
b = a. The value of r(v) is either 1(if b′ = a) or -1(if b′ = a). Like in [5], we
avoid using rules ac → a, but not the other three types, corresponding to the
pairs (a, a), (a, a), (a, a). E is omitted when L(E) = br and the rule is applied
only if the neuron contains exactly r spikes/anti-spikes. When neuron σi sends
spike/anti-spike, it is replicated in such a way that one spike/anti-spike is sent
to all neurons σj such that (i, j) ∈ syn. There is an additional fact that a and a
cannot stay together, so annihilate each other. If a neuron has either objects a
or objects a, and further objects of either type (may be both) arrive from other
neurons, such that we end with ar and as inside, then immediately a rule of the
form a a → λ, which is implicit in each neuron, is applied in a maximal manner,
so that either ar−s or as−r remain for the next step, provided that r ≥ s or
s ≥ r, respectively. This mutual annihilation of spikes and anti-spikes takes no
time and the rule has the highest priority.
The rules of type br → λ are forgetting rules; r spikes are simply removed (“for-
gotten”) when applying. Like in the case of spiking rules, the left hand side of a
forgetting rule must “cover” the contents of the neuron, that is, as→ λ is applied
only if the neuron contains exactly s spikes.
The simple SN P system works in a similar way but with only one type of object
called spike(a) and so there exist no annihilation rules.

Definition 2.2 (Configuration) The configuration of the system is described by
the number of spikes/anti-spikes present in each neuron. Thus 〈n1, n2, . . . , nm〉
is a configuration where neuron σi, i = 1, 2, 3, . . . , m contains ni spikes if ni > 0
or ni anti-spikes if ni < 0.
A global clock is assumed in SN P system and in each time unit, each neuron
which can use a rule should do it (the system is synchronized), but the work
of the system is sequential locally: only (at most) one rule is used in each neu-
ron except the annihilation rule which fires maximally with highest priority. For
example, if a neuron σi has two firing rules, E1 / ar→a and E2 / ak→a with
L(E1)∩L(E2) 6= φ, then it is possible that two rules can be applied in a neuron,
and in that case only one of them is chosen non-deterministically. Thus, the
rules are used in the sequential manner in each neuron, but neurons function in
parallel with each other. The rules are used in the non-deterministic manner, in
a maximally parallel way at the level of the system; in each step, all neurons
which can use a rule of any type, spiking or forgetting, have to evolve, using a
rule.
Definition 2.4 (Transition) Using the rules, we pass from one configuration of
the system to another configuration, such a step is called a transition. For two
configurations C and C′ of Π we denote by C ⇒ C′, if there is a direct transition
from C to C′ in Π .
A computation of Π is a finite or infinite sequences of transitions starting from
the initial configuration, and every configuration appearing in such a sequence is
called reachable. Note that the transition of C is non-deterministic in the sense
that there may be different set of rules applicable to C, as described above.

A computation halts if it reaches a configuration where no rule can be used.
There are various ways of using such a device [6]. In the generative mode, one of
the neurons is considered to be the output neuron, and its spikes are sent to the
environment. With any computation halting or not we associate a spike train, a
sequence of digits of 0 and 1, with 1 and 0 appearing in positions which indicate
the steps when the output neuron sends spikes and anti-spikes respectively, out
of the system. With any spike train we can associate various numbers which
are considered as computed by the system. Because of the non-determinism in
using the rules, a given system computes in this way a set of numbers. When
both an input and an output neuron are considered, the system can be used
as a transducer, both for strings and infinite sequences, as well as for comput-
ing numerical functions. Spikes can be introduced in the former one, at various
steps, while the spikes of the output neuron are sent to the environment. The
moments of time when a spike is emitted by the output neuron are marked with
1, the moments of anti-spikes are marked with 0. No output moments are just
ignored. The binary sequence obtained in this way is called the spike train of the
system; it might be infinite if the computation does not stop. A binary sequence
is similarly associated with the spikes entering the system. In the transducing
mode, a large class of (Boolean) functions can be computed.

Example 2.1

Consider the graphical representation of SN P system with anti-spikes in
Fig.1 and is formally denoted as
Π1=(O, σ1, σ2, syn , 2), with
σ1 = (-1, {a → a, a → λ}),
σ2 = (2, {a2/a → a , a2 → a , a → λ}),
syn={(1, 2), (2, 1)}.
We have two neurons, with labels 1, 2; neuron 2 is the output neuron. Initially

2

 a

2

a a
a a

1

2

a
a a a2/

Fig. 1. SN P system with anti-spikes generating 0∗1

neuron 1 has one anti-spike with one rule and neuron 2 has two spikes with
two rules. Both of them fire in the first step. Neuron 1 uses its rule and sends
a spike(1) to neuron 2. Neuron 2 can choose any of its two rules and as long
as it uses the first rule, one spikes is changed into anti-spike which will be sent
to environment and neuron 1. In the next step the system will be in the same
configuration with one anti-spike in neuron 1 and two spikes in neuron 2. At any
instance of time, starting from step 1, neuron 2 can choose its second rule, which
consumes its two spikes and sends a spike to neuron 1 and environment. In the
next step each neuron will have one spike and cannot proceed further. So the
system halts whenever neuron 2 outputs a spike. Because of the non-determinism
in using the rules of neuron 2, the system computes a set of binary strings(spike
train) represented using regular expression 0∗1.
A neuron is bounded if every rule in the neuron is of the form ai/aj → a where
j ≤ i or of the form ak → λ, provided there is no rule of the form ak/aj → a in
the neuron. Note that there can be several such rules in the neuron. These rules
are called bounded rules. An SN P system is bounded if all the neurons in the
system are bounded. As the neurons in the above SN P system with anti-spikes
are bounded, the system is a bounded SN P system with anti-spikes. Note that
we cannot construct simple bounded SN P systems generating the language 0∗1
[2]. In this paper we are using only bounded SN P systems with anti-spikes.

3 Simulating Universal Logic Gates

A universal gate is a gate which can implement any Boolean function without
need to use any other gate type. The NAND and NOR gates are universal gates.
The NAND gate represents the complement of the AND operation and the NOR
gate represents the complement of the OR operation. In practice, this is advan-
tageous since NAND and NOR gates are economical and easier to fabricate and
are the basic gates used in all IC digital logic families. In this section we simu-
late the NAND and NOR gates using SN P systems with anti-spikes working in
transducing mode. The Boolean values 0 and 1 are encoded in the SN P system
by anti-spike and spike respectively. The output of the system is 0(hence false)
if the output neuron sends an anti-spike and output is 1(true) if a spike is sent
to the environment. We want to emphasize that no rule of the form ac → a is
used.

Lemma 1. Boolean NAND gate and NOR gate can be simulated by SN P system
with seven neurons in three steps.

Proof. We construct SN P system with seven neurons as in Fig.2. The SN P
system has two input neurons to take the input values and one output neuron
to produce output. A spike/anti-spike is introduced in each input neuron corre-
sponding to input 1/0.
If we introduce a spike to an input neuron, the spike becomes an anti-spike and
sent to it’s two neighbouring neurons in the next stage. In each neuron in this
stage, anti-spike becomes spike and sent to output neuron. So the output neu-
ron gets two spikes. But if we introduce an anti-spike to an input neuron, the
anti-spike becomes spike and sent to the next two neighbouring neurons, where
one spike will be forgotten and only one spike is sent to the output neuron. So if
the input given to an input neuron is a spike(1) then the output neuron receives
2 spikes and if the input is an anti-spike(0), the output neuron receives 1 spike.
If a spike is introduced in each of the input neurons, the output neuron receives
4 spikes and it will fire using the rule a4 → a, sending an anti-spike(0) to the
environment. In other three cases(anti-spike is introduced in either of the input
neurons or in both), the output neuron receives 3 or 2 spikes and uses any one of
the other two rules to send an spike(1) to an environment. The systems outputs
a spike if one of its input is an anti-spike and outputs an anti-spike if all inputs
are spikes. We can observe that it is simulating the NAND gate correctly.
If in the above system, in the output neuron, if we replace all rules with a4 → a,
a3 → a and a2 → a, we obtain the system for 2-input NOR gate. Similar to the
2-input NAND gate, we can construct n-input NAND gate. The output of the
gate is false (0) only if all the inputs are true(1) and is true if any of the in-
puts is false. The SN P system for n-input NAND gate is shown in Fig.3. The
minimum number of spikes received by the output neuron is n (if all inputs are
anti-spikes) and maximum will be 2n (if all inputs are spikes). The rule a2n → a
in the output neuron fires if all inputs are spikes (1).

a a

 a a
a

2

a

a

input1
5

1

4

a

a a

a a

output a
a a

λ

2

input2

3

4

a a

 a a

a a

a a

a
a a

λ

a a
3

Fig. 2. SN P system with anti-spikes simulating 2-input NAND gate.

4 Simulating Circuits

Here, we present the way to simulate any Boolean circuit using NAND or NOR
gates constructed in the previous section. We know that any Boolean function
can be represented in sum-of-product (SOP) and product-of-sum forms (POS).
SOP forms can be implemented using only NAND gates, while POS forms can
be implemented using only NOR gates. In either case, implementation requires
two levels. The first level is for each term and second level for product or sum
of the terms.
Consider the Boolean function ¬(x1 ∧ x2) ∨ (x3 ∧ x4). It is written in SOP from
as ¬x1 ∨ ¬x2 ∨ (x3 ∧ x4)
We use the SN P systems with anti-spikes for 2-input and 3-input NAND gates.
Let ΠNAND is an SN P systems for NAND gate. The Boolean circuit corre-
sponding to the above formula as well as the spiking system assigned to it are
depicted in Fig.4.

Note that in Fig.4, Π
(1)
NAND, Π

(2)
NAND, Π

(3)
NAND are SN P systems for 2-input

NAND gates and Π
(4)
NAND is the SN P system for 3-input NAND gate. Having

the overall image of the functioning of the system, let us give some more details
on the simulation of the above formula. For that we construct the SN P system
with anti-spikes

ΠC=(Π
(1)
NAND, Π

(2)
NAND, Π

(3)
NAND, Π

(4)
NAND)

formed by the sub-SN P systems for each gate, and we obtain the unique result
as follows:

1. For every gate of the circuit with inputs from the input gates we have a SN
P system to simulate it. The input is given to the input neurons of each gate;

2. For each gate which has at least one input coming as an output of a previous
gate we construct a SN P system to simulate it by adding a synapse from
the output neuron of the gate from which the signal (spike) comes to the
input neuron of the system that simulates the new gate.

a a

 a a

a

2n-2

a

a

input1

2n+1

1

2n

a

a a

a a

output

a
a a

λ2

inputn

2n-1

2n

a a

 a a

a a

a a

a
a a

λ

a a
2n-1input2

3

4

a a

 a a

a a

a a

a
a a

λ.

.

.

.

.

.

.

.

.

.

.

.

.

a a n

Fig. 3. SN P system with anti-spikes simulating n-input NAND gate.

For the above formula and the circuit depicted in Fig. 4 we will have:

Π
(1)
NAND performs the first NAND operation ¬(¬x1 ∧¬x1) = x1 with each input

as ¬x1. (for ¬x1 as input, an anti-spike is introduced in each input neuron of

Π
(1)
NAND) .

Π
(2)
NAND performs the second NAND operation ¬(¬x2 ∧ ¬x2) = x2) with each

input as ¬x2.

Π
(3)
NAND performs the third NAND operation ¬(x3 ∧ x4) with inputs as x3 and

x4. These three SN P systems Π
(1)
NAND, Π

(2)
NAND and Π

(3)
NAND act in parallel

producing the output at the same time. The outputs enter the 3-input NAND

gate Π
(4)
NAND at the same time which eliminates the use of synchronising module

as in [4].

Π
(4)
NAND computes NAND operation on x1, x2 and ¬(x3 ∧ x4) outputting ¬x1 ∨

¬x2 ∨ (x3 ∧ x4) to the environment.
Generalizing the previous observations the following result holds:

Theorem 1. Every Boolean circuit can be simulated by a SN P system and
is constructed from SN P systems with anti-spikes of type NAND or NOR, by
reproducing the structure associated with the circuit.

(2)

NANDNAND

(1)

¬x x
42

x
3

¬x
1

(3)

NAND

(4)

NAND

Fig. 4. Boolean circuit and corresponding SN P system with anti-spikes for ¬(x1 ∧

x2) ∨ (x3 ∧ x4)

5 Arithmetic operations using SN P system with

anti-spikes

In this section we consider SN P system with anti-spikes as simple arithmetic
device that can perform the arithmetic operations like 2’s complement, addition
and subtraction with input and output in binary form. The binary sequence of 0
and 1 are encoded as anti-spike and spike respectively and in each time step input
is provided bit-by-bit starting from least significant bit. The negative numbers
are represented in two’s complement form. The advantage of using SN P systems
with anti-spikes is that they can encode the 0 and 1 as anti-spike and spike in
a very natural way and thus providing a way to represent negative numbers also.

5.1 2’s Complement

The 2’s complement is used to represent a negative of a binary number. It also
gives us a straightforward way to add and subtract positive and negative binary
numbers. A simple way to find the 2’s complement of a number is to start from
the least significant bit keeping every 0 as it is until you reach the first 1 and
then complement all the rest of the bits after the first 1.

Theorem 2. 2’s complement of a binary number can be calculated using an SN
P system with anti-spikes using three neurons.

Proof. The SN P system that performs the 2’s complement is shown in Fig.5.
Neuron 1 is the input neuron. Neuron 3 is the output neuron, which sends output

a a

 a a

a
a
2

a

 a a

3

input

2

1
a

4

/

a a
 a a

a a

 a a

3

output

Fig. 5. SN P system computing 2’s complement

to the environment. The input neuron has two rules to complement the input
by changing a spike into an anti-spike and an anti-spike into a spike and send
it to its neighbouring neuron 2. The neuron 2 initially has 3 spikes and as long
as it receives a spike(actual input to the input neuron is 0), it uses the first rule
a4/a → a to send a spike to the output neuron where it is complemented into
anti-spike, which is same as the input. But if the second neuron receives anti-
spike(that means we got the first 1), it will be left with two spikes because of
the annihilation rule that is implicitly present in each neuron and uses the rule
a2 → a and sends an anti-spike to the output neuron where it is complemented
as spike and sent to the environment(that is first 1 is unchanged). After firing
the rule, the neuron 2 has no spikes/anti-spikes and then simply complements
the input it receives by using the third and fourth rule and sends it to the output
neuron where it is again complemented and sent to the environment. That means
after the first one, the output will be the complement of input. We can easily
observe that the system correctly calculates the 2’s complement and emits its
first output bit at t = 4 as there is one intermediate neuron.

As an example, let us consider a binary number 01100 (12 in decimal). The
way the SN P system computes the 2’s complement is represented in Table.1. It
reports the number of spikes/anti-spikes present in each neuron and the output
produced by the output neuron to the environment in the output column.

5.2 Addition and Subtraction

The SN P system performing addition is shown in Fig.6. The negative numbers
are represented in 2’s complement form using the system SN P system given in
the previous section and then fed as input.

Theorem 3. Addition of two binary numbers can be performed using an SN P
system with seven neurons.

Proof. The system has two input neurons, the first number is provided through
input neuron 1 and the second one is through input neuron 2. input neuron 1 is
connected to neurons 1 and 2 and input neuron 2 is connected to neurons 3 and

Time step Input Neuron 2 Neuron 3 Output

t=0 - a
3 - -

t=1 a(0) a
3 - -

t=2 a(0) a
4 - -

t=3 a(1) a
4

a -
t=4 a(1) a

2
a a(0)

t=5 a(0) a a a(0)
t=6 - a a a(1)
t=7 - - a a(0)
t=8 - - - a(1)

Table 1. Number of spikes/anti-spikes present in each neuron of an SN P system
during the computation of 2’s complement of 01100.

4. The presence of a spike in the output neuron indicates a carry of the previous
addition. Each input neuron has two rules to complement the input and send
the output to its neighbouring two neurons. here we are having 3 cases:

1. If both the inputs are 1(spike), then each input neuron uses the second rule
and sends an anti-spike to two of its neighbouring neurons where the anti-
spikes are converted spikes. So the output neuron 5 receives four spikes, one
from each of the four neurons of the previous stage. If the output neuron
is already having a spike(carry), then the number of spikes becomes 5 and
fires using a rule a5/a4 → a otherwise it has four spikes and fires using the
rule a4/a3 → a leaving one spike in the output neuron in either case. The
presence of a spike in the output neuron indicates a carry. This encodes the
two operations 1+1=0 with carry 1 and (1)+1+1=1 with carry 1.

2. If one of the input bit is zero, then the input neuron receiving an anti-spike
sends a spike to each of its neighbouring neurons. For example if the input 1
is 0 and input 2 is 1 then input neuron 1 sends a spike to each of neighbouring
neurons 1 and 2. In the neuron 1 , the spike remains the same and whereas in
neuron 2 it is forgotten, so the number of spikes sent to the output neuron is
1, whereas the neighbouring neurons of input neuron 2 send two spikes to the
output neuron. So three spikes are received if one of the input is zero. The
output neuron has either three or four(in case carry)spikes and fires using
a3 → a or a4/a3 → a respectively. These rules encode the two operations
0+1=1 and (1)+0+1=0 with carry 1 respectively.

3. If both the input neurons receive anti-spikes(0), then the output neuron
receives two spikes and it will have either two or three(again in case of carry
of the previous operation) spikes and fires using a2 → a or a3 → a. These two
rules do not leave any carry encoding the operations 0+0=0 and (1)+0+0=1
respectively.

The last rule in the output neuron a → λ allows the last overflow bit to be
ignored. The procedure confirms the correctness of the system for performing
the addition of two numbers.

a a

 a a a

2

a

 a a

input1

5

1

4

a a

a a

a a

output a
a a

λ

2

input2

3

4

3

a a

 a a

a a

a a

a
a a

λ

a5/

a a 3a4/

a λ

Fig. 6. SN P System with anti-spikes simulating addition operation

As an example, let us consider the addition of 7 and -5. Number 7 is represented
in binary form as 0111 and -5 is represented in 2’s complement form as 1011.
The two binary sequences will form the input for the SN P system. The number
of spikes present in each neuron in every step and the output produced by the
system is depicted in Table.2.
Two’s complement subtraction is the binary addition of the minuend to the

Time step Input1 Input2 Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Output

t=1 a(1) a(1) - - - - - -
t=2 a(1) a (1) a a a a - -
t=3 a(1) a(0) a a a a a

4 -
t=4 a(0) a(1) a a a a a

5
a(0)

t=5 - - a a a a a
4

a(1)
t=6 - - - - - - a

4
a(0)

t=7 - - - - - - a a(0)
t=7 - - - - - - - -

Table 2. Number of spikes/anti-spikes present in each neuron of addition SN P system
during the addition of 0111 and 1011.

2’s complement of the subtrahend (adding a negative number is the same as
subtracting a positive one). That means a−b becomes a+(−b). The SN P system
for addition can to do subtraction. The multiplication is viewed as repeated
addition and division as repeated subtraction. This implies that SN P systems
with anti-spikes can very well perform the binary operations in a natural way.

6 Conclusion

In this paper we designed some SN P systems with anti-spikes to perform some
arithmetic operations like 2’s complement, addition and subtraction. The ad-
vantage of using this variant of SN P system is that spikes and anti-spikes can
encode the binary digits in a more natural way and we can perform the opera-
tions on negative numbers also. The input to the systems is a binary sequence
of spikes and anti-spikes which encodes the digits 1 and 0 respectively, of a bi-
nary number. The negative numbers are in 2’s complement form. The outputs
of the computations are also expelled to the environment in the same form. We
also designed SN P systems simulating the operations of NAND and NOR. This
motivates the implementation of CPU using SN P system with anti-spikes.

References

1. Gutiérréz-Naranjo, M. A., Leporati, A.: First Steps Towards a CPU Made of Spik-
ing Neural P Systems, Int. J. of Computers, Communications and Control 4 244-252
(2009).

2. Ibarra, O. H., Woodworth, S.: Spiking Neural P Systems: Some Characterizations,
FCT 2007, LNCS, vol. 4639, pp. 23-37, Springer, Heidelberg (2007).

3. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking Neural P Systems, Fund. Infor. 71,
279-308 (2006).

4. Ionescu, M., Sburlan, D.: Some Applications of Spiking Neural P systems, J. of
Computing and Informatics 27 515-528 (2008).

5. Linqiang, P., Păun, Gh.: Spiking Neural P Systems with Anti-Spikes, Int. J. of
Computers, Communications and Control 4, 273-282, (2009).

6. Păun, Gh.: Spiking Neural P Systems Used as Acceptors and Transducers, CIAA,
LNCS, vol. 4783, pp. 1-4, Springer, Heidelberg (2007).

