
Multilayer Perceptrons in ANNs

R.K.Sharma*, Deepak Garg**, Amit Bhardwaj***
*Head, Computer Center

**Computer Science & Engineering Department

***Electronics & Communication Engineering Department

Thapar Institute of Engineering & technology

{rksharma,dgarg,abhardwaj} @mail.tiet.ac.in

Abstract
This is perhaps the most popular network

architecture in use today. This is the type of

network discussed briefly in previous sections:

the units each perform a biased weighted sum of

their inputs and pass this activation level

through a transfer function to produce their

output, and the units are arranged in a layered

feedforward topology. The network thus has a

simple interpretation as a form of input-output

model, with the weights and thresholds (biases)

the free parameters of the model. Such networks

can model functions of almost arbitrary

complexity, with the number of layers, and the

number of units in each layer, determining the

function complexity. Important issues in

Multilayer Perceptrons (MLP) design include

specification of the number of hidden layers and

the number of units in these layers.

1. Introduction

The number of input and output units is defined

by the problem (there may be some uncertainty

about precisely which inputs to use, a point to

which we will return later. However, for the

moment we will assume that the input variables

are intuitively selected and are all meaningful).

The number of hidden units to use is far from

clear. As good a starting point as any is to use

one hidden layer, with the number of units equal

to half the sum of the number of input and output

units.

1.1 Training Multilayer Perceptrons
Once the number of layers, and number of units

in each layer, has been selected, the network's

weights and thresholds must be set so as to

minimize the prediction error made by the

network. This is the role of the training

algorithms. The historical cases that you have

gathered are used to automatically adjust the

weights and thresholds in order to minimize this

error. This process is equivalent to fitting the

model represented by the network to the training

data available. The error of a particular

configuration of the network can be determined

by running all the training cases through the

network, comparing the actual output generated

with the desired or target outputs. The

differences are combined together by an error

function to give the network error. The most

common error functions are the sum squared

error (used for regression problems), where the

individual errors of output units on each case are

squared and summed together, and the cross

entropy functions (used for maximum likelihood

classification).

In traditional modeling approaches (e.g., linear

modeling) it is possible to algorithmically

determine the model configuration that

absolutely minimizes this error. The price paid

for the greater (non-linear) modeling power of

neural networks is that although we can adjust a

network to lower its error, we can never be sure

that the error could not be lower still.

A helpful concept here is the error surface. Each

of the N weights and thresholds of the network

(i.e., the free parameters of the model) is taken to

be a dimension in space. The N+1th dimension

is the network error. For any possible

configuration of weights the error can be plotted

in the N+1th dimension, forming an error

surface. The objective of network training is to

find the lowest point in this many-dimensional

surface.

In a linear model with sum squared error

function, this error surface is a parabola (a

quadratic), which means that it is a smooth bowl-

shape with a single minimum. It is therefore

"easy" to locate the minimum.

Neural network error surfaces are much more

complex, and are characterized by a number of

unhelpful features, such as local minima (which

are lower than the surrounding terrain, but above

the global minimum), flat-spots and plateaus,

saddle-points, and long narrow ravines.

It is not possible to analytically determine where

the global minimum of the error surface is, and

so neural network training is essentially an

exploration of the error surface. From an initially

random configuration of weights and thresholds

(i.e., a random point on the error surface), the

training algorithms incrementally seek for the

global minimum. Typically, the gradient (slope)

of the error surface is calculated at the current

point, and used to make a downhill move.

Eventually, the algorithm stops in a low point,

which may be a local minimum (but hopefully is

the global minimum).

2. The Back Propagation Algorithm

The best-known example of a neural network

training algorithm is back propagation. Modern

second-order algorithms such as conjugate

gradient descent and Levenberg-Marquardt

(both included in ST Neural Networks) are

substantially faster (e.g., an order of magnitude

faster) for many problems, but back propagation

still has advantages in some circumstances, and

is the easiest algorithm to understand. We will

introduce this now, and discuss the more

advanced algorithms later. There are also

heuristic modifications of back propagation

which work well for some problem domains,

such as quick propagation (Fahlman, 1988) and

Delta-Bar-Delta (Jacobs, 1988) and are also

included in ST Neural Networks.

In back propagation, the gradient vector of the

error surface is calculated. This vector points

along the line of steepest descent from the

current point, so we know that if we move along

it a "short" distance, we will decrease the error.

A sequence of such moves (slowing as we near

the bottom) will eventually find a minimum of

some sort. The difficult part is to decide how

large the steps should be.

Large steps may converge more quickly, but may

also overstep the solution or (if the error surface

is very eccentric) go off in the wrong direction.

A classic example of this in neural network

training is where the algorithm progresses very

slowly along a steep, narrow, valley, bouncing

from one side across to the other. In contrast,

very small steps may go in the correct direction,

but they also require a large number of iterations.

In practice, the step size is proportional to the

slope (so that the algorithms settles down in a

minimum) and to a special constant: the learning

rate. The correct setting for the learning rate is

application-dependent, and is typically chosen by

experiment; it may also be time-varying, getting

smaller as the algorithm progresses.

The algorithm is also usually modified by

inclusion of a momentum term: this encourages

movement in a fixed direction, so that if several

steps are taken in the same direction, the

algorithm "picks up speed", which gives it the

ability to (sometimes) escape local minimum,

and also to move rapidly over flat spots and

plateaus.

The algorithm therefore progresses iteratively,

through a number of epochs. On each epoch, the

training cases are each submitted in turn to the

network, and target and actual outputs compared

and the error calculated. This error, together with

the error surface gradient, is used to adjust the

weights, and then the process repeats. The initial

network configuration is random, and training

stops when a given number of epochs elapses, or

when the error reaches an acceptable level, or

when the error stops improving (you can select

which of these stopping conditions to use).

3. Over-learning and Generalization

One major problem with the approach outlined

above is that it doesn't actually minimize the

error that we are really interested in - which is

the expected error the network will make when

new cases are submitted to it. In other words, the

most desirable property of a network is its ability

to generalize to new cases. In reality, the

network is trained to minimize the error on the

training set, and short of having a perfect and

infinitely large training set, this is not the same

thing as minimizing the error on the real error

surface - the error surface of the underlying and

unknown model.

The most important manifestation of this

distinction is the problem of over-learning, or

over-fitting. It is easiest to demonstrate this

concept using polynomial curve fitting rather

than neural networks, but the concept is precisely

the same.

A polynomial is an equation with terms

containing only constants and powers of the

variables. For example:

y=2x+3

y=3x
2
+4x+1

Different polynomials have different shapes,

with larger powers (and therefore larger numbers

of terms) having steadily more eccentric shapes.

Given a set of data, we may want to fit a

polynomial curve (i.e., a model) to explain the

data. The data is probably noisy, so we don't

necessarily expect the best model to pass exactly

through all the points. A low-order polynomial

may not be sufficiently flexible to fit close to the

points, whereas a high-order polynomial is

actually too flexible, fitting the data exactly by

adopting a highly eccentric shape that is actually

unrelated to the underlying function.

Neural networks have precisely the same

problem. A network with more weights models a

more complex function, and is therefore prone to

over-fitting. A network with less weights may

not be sufficiently powerful to model the

underlying function. For example, a network

with no hidden layers actually models a simple

linear function.

How then can we select the right complexity of

network? A larger network will almost

invariably achieve a lower error eventually, but

this may indicate over-fitting rather than good

modeling.

The answer is to check progress against an

independent data set, the selection set. Some of

the cases are reserved, and not actually used for

training in the back propagation algorithm.

Instead, they are used to keep an independent

check on the progress of the algorithm. It is

invariably the case that the initial performance of

the network on training and selection sets is the

same (if it is not at least approximately the same,

the division of cases between the two sets is

probably biased). As training progresses, the

training error naturally drops, and providing

training is minimizing the true error function, the

selection error drops too. However, if the

selection error stops dropping, or indeed starts to

rise, this indicates that the network is starting to

overfit the data, and training should cease. When

over-fitting occurs during the training process

like this, it is called over-learning. In this case, it

is usually advisable to decrease the number of

hidden units and/or hidden layers, as the network

is over-powerful for the problem at hand. In

contrast, if the network is not sufficiently

powerful to model the underlying function, over-

learning is not likely to occur, and neither

training nor selection errors will drop to a

satisfactory level.

The problems associated with local minima, and

decisions over the size of network to use, imply

that using a neural network typically involves

experimenting with a large number of different

networks, probably training each one a number

of times (to avoid being fooled by local minima),

and observing individual performances. The key

guide to performance here is the selection error.

However, following the standard scientific

precept that, all else being equal, a simple model

is always preferable to a complex model, you can

also select a smaller network in preference to a

larger one with a negligible improvement in

selection error.

A problem with this approach of repeated

experimentation is that the selection set plays a

key role in selecting the model, which means that

it is actually part of the training process. Its

reliability as an independent guide to

performance of the model is therefore

compromised - with sufficient experiments, you

may just hit upon a lucky network that happens

to perform well on the selection set. To add

confidence in the performance of the final

model, it is therefore normal practice (at least

where the volume of training data allows it) to

reserve a third set of cases - the test set. The final

model is tested with the test set data, to ensure

that the results on the selection and training set

are real, and not artifacts of the training process.

Of course, to fulfill this role properly the test set

should be used only once - if it is in turn used to

adjust and reiterate the training process, it

effectively becomes selection data!

This division into multiple subsets is very

unfortunate, given that we usually have less data

than we would ideally desire even for a single

subset. We can get around this problem by

resampling. Experiments can be conducted using

different divisions of the available data into

training, selection, and test sets. There are a

number of approaches to this subset, including

random (monte-carlo) resampling, cross-

validation, and bootstrap. If we make design

decisions, such as the best configuration of

neural network to use, based upon a number of

experiments with different subset examples, the

results will be much more reliable. We can then

either use those experiments solely to guide the

decision as to which network types to use, and

train such networks from scratch with new

samples (this removes any sampling bias); or, we

can retain the best networks found during the

sampling process, but average their results in an

emsemble, which at least mitigates the sampling

bias.

To summarize, network design (once the input

variables have been selected) follows a number

of stages:

 Select an initial configuration (typically,

one hidden layer with the number of

hidden units set to half the sum of the

number of input and output units).

 Iteratively conduct a number of

experiments with each configuration,

retaining the best network (in terms of

selection error) found. A number of

experiments are required with each

configuration to avoid being fooled if

training locates a local minimum, and it

is also best to resample.

 On each experiment, if under-learning

occurs (the network doesn't achieve an

acceptable performance level) try

adding more neurons to the hidden

layer(s). If this doesn't help, try adding

an extra hidden layer.

 If over-learning occurs (selection error

starts to rise) try removing hidden units

(and possibly layers).

 Once you have experimentally

determined an effective configuration

for your networks, resample and

generate new networks with that

configuration.

4. Data Selection

All the above stages rely on a key assumption.

Specifically, the training, verification and test

data must be representative of the underlying

model (and, further, the three sets must be

independently representative). The old computer

science adage "garbage in, garbage out" could

not apply more strongly than in neural modeling.

If training data is not representative, than the

model's worth is at best compromised. At worst,

it may be useless. It is worth spelling out the

kind of problems which can corrupt a training

set:

The future is not the past. Training data is

typically historical. If circumstances have

changed, relationships which held in the past

may no longer hold.

All eventualities must be covered. A neural

network can only learn from cases that are

present. If people with incomes over $100,000

per year are a bad credit risk, and your training

data includes nobody over $40,000 per year, you

cannot expect it to make a correct decision when

it encounters one of the previously-unseen cases.

Extrapolation is dangerous with any model, but

some types of neural network may make

particularly poor predictions in such

circumstances.

A network learns the easiest features it can. A

classic (possibly apocryphal) illustration of this

is a vision project designed to automatically

recognize tanks. A network is trained on a

hundred pictures including tanks, and a hundred

not. It achieves a perfect 100% score. When

tested on new data, it proves hopeless. The

reason? The pictures of tanks are taken on dark,

rainy days; the pictures without on sunny days.

The network learns to distinguish the (trivial

matter of) differences in overall light intensity.

To work, the network would need training cases

including all weather and lighting conditions

under which it is expected to operate - not to

mention all types of terrain, angles of shot,

distances...

Unbalanced data sets. Since a network

minimizes an overall error, the proportion of

types of data in the set is critical. A network

trained on a data set with 900 good cases and

100 bad will bias its decision towards good

cases, as this allows the algorithm to lower the

overall error (which is much more heavily

influenced by the good cases). If the

representation of good and bad cases is different

in the real population, the network's decisions

may be wrong. A good example would be

disease diagnosis. Perhaps 90% of patients

routinely tested are clear of a disease. A network

is trained on an available data set with a 90/10

split. It is then used in diagnosis on patients

complaining of specific problems, where the

likelihood of disease is 50/50. The network will

react over-cautiously and fail to recognize

disease in some unhealthy patients. In contrast, if

trained on the "complainants" data, and then

tested on "routine" data, the network may raise a

high number of false positives. In such

circumstances, the data set may need to be

crafted to take account of the distribution of data

(e.g., you could replicate the less numerous

cases, or remove some of the numerous cases),

or the network's decisions modified by the

inclusion of a loss matrix. Often, the best

approach is to ensure even representation of

different cases, then to interpret the network's

decisions accordingly.

Insights into MLP Training

More key insights into MLP behavior and

training can be gained by considering the type of

functions they model. Recall that the activation

level of a unit is the weighted sum of the inputs,

plus a threshold value. This implies that the

activation level is actually a simple linear

function of the inputs. The activation is then

passed through a sigmoid (S-shaped) curve. The

combination of the multi-dimensional linear

function and the one-dimensional sigmoid

function gives the characteristic sigmoid cliff

response of a first hidden layer MLP unit (the

figure below illustrates the shape plotted across

two inputs. An MLP unit with more inputs has a

higher-dimensional version of this functional

shape). Altering the weights and thresholds alters

this response surface. In particular, both the

orientation of the surface, and the steepness of

the sloped section, can be altered. A steep slope

corresponds to large weight values: doubling all

weight values gives the same orientation but a

different slope.

A multi-layered network combines a number of

these response surfaces together, through

repeated linear combination and non-linear

activation functions. The next figure illustrates a

typical response surface for a network with only

one hidden layer, of two units, and a single

output unit, on the classic XOR problem. Two

separate sigmoid surfaces have been combined

into a single U-shaped surface.

During network training, the weights and

thresholds are first initialized to small, random

values. This implies that the units' response

surfaces are each aligned randomly with low

slope: they are effectively uncommitted. As

training progresses, the units' response surfaces

are rotated and shifted into appropriate positions,

and the magnitudes of the weights grow as they

commit to modeling particular parts of the target

response surface.

In a classification problem, an output unit's task

is to output a strong signal if a case belongs to its

class, and a weak signal if it doesn't. In other

words, it is attempting to model a function that

has magnitude one for parts of the pattern-space

that contain its cases, and magnitude zero for

other parts.

This is known as a discriminant function in

pattern recognition problems. An ideal

discriminant function could be said to have a

plateau structure, where all points on the

function are either at height zero or height one.

If there are no hidden units, then the output can

only model a single sigmoid-cliff with areas to

one side at low height and areas to the other

high. There will always be a region in the middle

(on the cliff) where the height is in-between, but

as weight magnitudes are increased, this area

shrinks.

A sigmoid-cliff like this is effectively a linear

discriminant. Points to one side of the cliff are

classified as belonging to the class, points to the

other as not belonging to it. This implies that a

network with no hidden layers can only classify

linearly-separable problems (those where a line -

or, more generally in higher dimensions, a

hyperplane - can be drawn which separates the

points in pattern space).

A network with a single hidden layer has a

number of sigmoid-cliffs (one per hidden unit)

represented in that hidden layer, and these are in

turn combined into a plateau in the output layer.

The plateau has a convex hull (i.e., there are no

dents in it, and no holes inside it). Although the

plateau is convex, it may extend to infinity in

some directions (like an extended peninsular).

Such a network is in practice capable of

modeling adequately most real-world

classification problems.

The figure above shows the plateau response

surface developed by an MLP to solve the XOR

problem: as can be seen, this neatly sections the

space along a diagonal.

A network with two hidden layers has a number

of plateaus combined together - the number of

plateaus corresponds to the number of units in

the second layer, and the number of sides on

each plateau corresponds to the number of units

in the first hidden layer. A little thought shows

that you can represent any shape (including

concavities and holes) using a sufficiently large

number of such plateaus.

A consequence of these observations is that an

MLP with two hidden layers is theoretically

sufficient to model any problem (there is a more

formal proof, the Kolmogorov Theorem). This

does not necessarily imply that a network with

more layers might not more conveniently or

easily model a particular problem. In practice,

however, most problems seem to yield to a

single hidden layer, with two an occasional

resort and three practically unknown.

A key question in classification is how to

interpret points on or near the cliff. The standard

practice is to adopt some confidence levels (the

accept and reject thresholds) that must be

exceeded before the unit is deemed to have made

a decision. For example, if accept/reject

thresholds of 0.95/0.05 are used, an output unit

with an output level in excess of 0.95 is deemed

to be on, below 0.05 it is deemed to be off, and

in between it is deemed to be undecided.

A more subtle (and perhaps more useful)

interpretation is to treat the network outputs as

probabilities. In this case, the network gives

more information than simply a decision: it tells

us how sure (in a formal sense) it is of that

decision. There are modifications to MLPs that

allow the neural network outputs to be

interpreted as probabilities, which means that the

network effectively learns to model the

probability density function of the class.

However, the probabilistic interpretation is only

valid under certain assumptions about the

distribution of the data (specifically, that it is

drawn from the family of exponential

distributions). Ultimately, a classification

decision must still be made, but a probabilistic

interpretation allows a more formal concept of

minimum cost decision making to be evolved.

5. Other MLP Training Algorithms

Earlier in this section, we discussed how the

back propagation algorithm performs gradient

descent on the error surface. Speaking loosely, it

calculates the direction of steepest descent on the

surface, and jumps down the surface a distance

proportional to the learning rate and the slope,

picking up momentum as it maintains a

consistent direction. As an analogy, it behaves

like a blindfold kangaroo hopping in the most

obvious direction. Actually, the descent is

calculated independently on the error surface for

each training case, and in random order, but this

is actually a good approximation to descent on

the composite error surface. Other MLP training

algorithms work differently, but all use a strategy

designed to travel towards a minimum as quickly

as possible.

More sophisticated techniques for non-linear

function optimization have been in use for some

time. These methods include conjugate gradient

descent, quasi-Newton, and Levenberg-

Marquardt, which are very successful forms of

two types of algorithm: line search and model-

trust region approaches. They are collectively

known as second order training algorithms.

A line search algorithm works as follows: pick a

sensible direction to move in the multi-

dimensional landscape. Then project a line in

that direction, locate the minimum along that line

(it is relatively trivial to locate a minimum along

a line, by using some form of bisection

algorithm), and repeat. What is a sensible

direction in this context? An obvious choice is

the direction of steepest descent (the same

direction that would be chosen by back

propagation). Actually, this intuitively obvious

choice proves to be rather poor. Having

minimized along one direction, the next line of

steepest descent may spoil the minimization

along the initial direction (even on a simple

surface like a parabola a large number of line

searches may be necessary). A better approach is

to select conjugate or non-interfering directions -

hence conjugate gradient descent .

The idea here is that, once the algorithm has

minimized along a particular direction, the

second derivative along that direction should be

kept at zero. Conjugate directions are selected to

maintain this zero second derivative on the

assumption that the surface is parabolic

(speaking roughly, a nice smooth surface). If this

condition holds, N epochs are sufficient to reach

a minimum. In reality, on a complex error

surface the conjugacy deteriorates, but the

algorithm still typically requires far less epochs

than back propagation, and also converges to a

better minimum (to settle down thoroughly, back

propagation must be run with an extremely low

learning rate).

Quasi-Newton training is based on the

observation that the direction pointing directly

towards the minimum on a quadratic surface is

the so-called Newton direction. This is very

expensive to calculate analytically, but quasi-

Newton iteratively builds up a good

approximation to it. Quasi-Newton is usually a

little faster than conjugate gradient descent, but

has substantially larger memory requirements

and is occasionally numerically unstable.

A model-trust region approach works as follows:

instead of following a search direction, assume

that the surface is a simple shape such that the

minimum can be located (and jumped to) directly

- if the assumption is true. Try the model out and

see how good the suggested point is. The model

typically assumes that the surface is a nice well-

behaved shape (e.g., a parabola), which will be

true if sufficiently close to a minima. Elsewhere,

the assumption may be grossly violated, and the

model could choose wildly inappropriate points

to move to. The model can only be trusted within

a region of the current point, and the size of this

region isn't known. Therefore, choose new points

to test as a compromise between that suggested

by the model and that suggested by a standard

gradient-descent jump. If the new point is good,

move to it, and strengthen the role of the model

in selecting a new point; if it is bad, don't move,

and strengthen the role of the gradient descent

step in selecting a new point (and make the step

smaller). Levenberg-Marquardt uses a model

that assumes that the underlying function is

locally linear (and therefore has a parabolic error

surface).

Levenberg-Marquardt is typically the fastest of

the training algorithms, although unfortunately it

has some important limitations, specifically: it

can only be used on single output networks, can

only be used with the sum squared error

function, and has memory requirements

proportional to W2 (where W is the number of

weights in the network; this makes it impractical

for reasonably big networks). Conjugate

gradient descent is nearly as good, and doesn't

suffer from these restrictions.

Back propagation can still be useful, not least in

providing a quick (if not overwhelmingly

accurate) solution. It is also a good choice if the

data set is very large, and contains a great deal of

redundant data. Back propagation's case-by-case

error adjustment means that data redundancy

does it no harm (for example, if you double the

data set size by replicating every case, each

epoch will take twice as long, but have the same

effect as two of the old epochs, so there is no

loss). In contrast, Levenberg-Marquardt, quasi-

Newton, and conjugate gradient descent all

perform calculations using the entire data set, so

increasing the number of cases can significantly

slow each epoch, but does not necessarily

improve performance on that epoch (not if data

is redundant; if data is sparse, then adding data

will make each epoch better). Back propagation

can also be equally good if the data set is very

small, for there is then insufficient information to

make a highly fine-tuned solution appropriate (a

more advanced algorithm may achieve a lower

training error, but the selection error is unlikely

to improve in the same way). Finally, the second

order training algorithms seem to be very prone

to stick in local minima in the early phases - for

this reason, we recommend the practice of

starting with a short burst of back propagation,

before switching to a second order algorithm.

There are variations on back propagation (quick

propagation and Delta-bar-Delta) that are

designed to deal with some of the limitations on

this technique. In most cases, they are not

significantly better than back propagation, and

sometimes they are worse (relative performance

is application-dependent). They also require

more control parameters than any of the other

algorithms, which makes them more difficult to

use, so they are not described in further detail in

this section.

Radial Basis Function Networks

We have seen in the last section how an MLP

models the response function using the

composition of sigmoid-cliff functions - for a

classification problem, this corresponds to

dividing the pattern space up using hyperplanes.

The use of hyperplanes to divide up space is a

natural approach - intuitively appealing, and

based on the fundamental simplicity of lines.

An equally appealing and intuitive approach is to

divide up space using circles or (more generally)

hyperspheres. A hypersphere is characterized by

its center and radius. More generally, just as an

MLP unit responds (non-linearly) to the distance

of points from the line of the sigmoid-cliff, in a

radial basis function network units respond (non-

linearly) to the distance of points from the center

represented by the radial unit. The response

surface of a single radial unit is therefore a

Gaussian (bell-shaped) function, peaked at the

center, and descending outwards. Just as the

steepness of the MLP's sigmoid curves can be

altered, so can the slope of the radial unit's

Gaussian.

MLP units are defined by their weights and

threshold, which together give the equation of

the defining line, and the rate of fall-off of the

function from that line. Before application of the

sigmoid activation function, the activation level

of the unit is determined using a weighted sum,

which mathematically is the dot product of the

input vector and the weight vector of the unit;

these units are therefore referred to as dot

product units. In contrast, a radial unit is defined

by its center point and a radius. A point in N

dimensional space is defined using N numbers,

which exactly corresponds to the number of

weights in a dot product unit, so the center of a

radial unit is stored as weights. The radius (or

deviation) value is stored as the threshold. It is

worth emphasizing that the weights and

thresholds in a radial unit are actually entirely

different to those in a dot product unit, and the

terminology is dangerous if you don't remember

this: Radial weights really form a point, and a

radial threshold is really a deviation.

A radial basis function network (RBF),

therefore, has a hidden layer of radial units, each

actually modeling a Gaussian response surface.

Since these functions are nonlinear, it is not

actually necessary to have more than one hidden

layer to model any shape of function: sufficient

radial units will always be enough to model any

function. The remaining question is how to

combine the hidden radial unit outputs into the

network outputs? It turns out to be quite

sufficient to use a linear combination of these

outputs (i.e., a weighted sum of the Gaussians) to

model any nonlinear function. The standard RBF

has an output layer containing dot product units

with indentity activation function.

RBF networks have a number of advantages over

MLPs. First, as previously stated, they can model

any nonlinear function using a single hidden

layer, which removes some design-decisions

about numbers of layers. Second, the simple

linear transformation in the output layer can be

optimized fully using traditional linear modeling

techniques, which are fast and do not suffer from

problems such as local minima which plague

MLP training techniques. RBF networks can

therefore be trained extremely quickly (i.e.,

orders of magnitude faster than MLPs).

On the other hand, before linear optimization can

be applied to the output layer of an RBF

network, the number of radial units must be

decided, and then their centers and deviations

must be set. Although faster than MLP training,

the algorithms to do this are equally prone to

discover sub-optimal combinations. Other

features that distinguish RBF performance from

MLPs are due to the differing approaches to

modeling space, with RBFs "clumpy" and MLPs

"planey."

Other features which distinguish RBF

performance from MLPs are due to the differing

approaches to modeling space, with RBFs

"clumpy" and MLPs "planey."

The clumpy approach also implies that RBFs are

not inclined to extrapolate beyond known data:

the response drops off rapidly towards zero if

data points far from the training data are used.

Often the RBF output layer optimization will

have set a bias level, hopefully more or less

equal to the mean output level, so in fact the

extrapolated output is the observed mean - a

reasonable working assumption. In contrast, an

MLP becomes more certain in its response when

far-flung data is used. Whether this is an

advantage or disadvantage depends largely on

the application, but on the whole the MLP's

uncritical extrapolation is regarded as a bad

point: extrapolation far from training data is

usually dangerous and unjustified.

RBFs are also more sensitive to the curse of

dimensionality, and have greater difficulties if

the number of input units is large: this problem is

discussed further in a later section.

As mentioned earlier, training of RBFs takes

place in distinct stages. First, the centers and

deviations of the radial units must be set; then

the linear output layer is optimized.

Centers should be assigned to reflect the natural

clustering of the data. The two most common

methods are:

Sub-sampling. Randomly-chosen training points

are copied to the radial units. Since they are

randomly selected, they will represent the

distribution of the training data in a statistical

sense. However, if the number of radial units is

not large, the radial units may actually be a poor

representation .

K-Means algorithm. This algorithm tries to

select an optimal set of points that are placed at

the centroids of clusters of training data. Given K

radial units, it adjusts the positions of the centers

so that:

 Each training point belongs to a cluster

center, and is nearer to this center than

to any other center;

 Each cluster center is the centroid of the

training points that belong to it.

Once centers are assigned, deviations are set.

The size of the deviation (also known as a

smoothing factor) determines how spiky the

Gaussian functions are. If the Gaussians are too

spiky, the network will not interpolate between

known points, and the network loses the ability

to generalize. If the Gaussians are very broad,

the network loses fine detail. This is actually

another manifestation of the over/under-fitting

dilemma. Deviations should typically be chosen

so that Gaussians overlap with a few nearby

centers. Methods available are:

Explicit. Choose the deviation yourself.

Isotropic. The deviation (same for all units) is

selected heuristically to reflect the number of

centers and the volume of space they occupy.

K-Nearest Neighbor. Each unit's deviation is

individually set to the mean distance to its K

nearest neighbors. Hence, deviations are smaller

in tightly packed areas of space, preserving

detail, and higher in sparse areas of space

(interpolating where necessary).

Once centers and deviations have been set, the

output layer can be optimized using the standard

linear optimization technique: the pseudo-inverse

(singular value decomposition) algorithm.

However, RBFs as described above suffer

similar problems to Multilayer Perceptrons if

they are used for classification - the output of the

network is a measure of distance from a decision

hyperplane, rather than a probabilistic

confidence level. We may therefore choose to

modify the RBF by including an output layer

with logistic or softmax (normalized

exponential) outputs, which is capable of

probability estimation. We lose the advantage of

fast linear optimization of the output layer;

however, the non-linear output layer still has a

relatively well-behaved error surface, and can be

optimized quite quickly using a fast iterative

algorithm such as conjugate gradient descent.

Radial basis functions can also be hybridized in a

number of ways. The radial layer (the hidden

layer) can be trained using the Kohonen and

Learned Vector Quantization training algorithms,

which are alternative methods of assigning

centers to reflect the spread of data, and the

output layer (whether linear or otherwise) can be

trained using any of the iterative dot product

algorithms.

Conclusion

Neural network error surfaces are much more

complex, and are characterized by a number of

unhelpful features, such as local minima (which

are lower than the surrounding terrain, but above

the global minimum), flat-spots and plateaus,

saddle-points, and long narrow ravines.

Experience indicates that the RBF's more

eccentric response surface requires a lot more

units to adequately model most functions. Of

course, it is always possible to draw shapes that

are most easily represented one way or the other,

but the balance does not favor RBFs.

Consequently, an RBF solution will tend to be

slower to execute and more space consuming

than the corresponding MLP (but it was much

faster to train, which is sometimes more of a

constraint).

References

o Kay(1994a) Information Theoretic Neural

Networks for Contextually Guided

Unsupervised Learning: Mathematical and

Statistical Considerations. Research report.

o Neural Networks : Simon Haykin, a

comprehensive foundation

o P.D. WasserMan, Neural Computing:

Theory and Practice , Van Nortrand Reinhold

o Bose, Neural Network fundamentals with

graphs, algorithms and applications

o R.H.Neilson, Neurocomputing, Addison

Wesley

o J. Anderson et al., Neurocomputing Vol. 1

& Vol 2, MIT Press, 1986 & 1988

