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Abstract 
This is perhaps the most popular network 

architecture in use today. This is the type of 

network discussed briefly in previous sections: 

the units each perform a biased weighted sum of 

their inputs and pass this activation level 

through a transfer function to produce their 

output, and the units are arranged in a layered 

feedforward topology. The network thus has a 

simple interpretation as a form of input-output 

model, with the weights and thresholds (biases) 

the free parameters of the model. Such networks 

can model functions of almost arbitrary 

complexity, with the number of layers, and the 

number of units in each layer, determining the 

function complexity. Important issues in 

Multilayer Perceptrons (MLP) design include 

specification of the number of hidden layers and 

the number of units in these layers.  

1. Introduction 

The number of input and output units is defined 

by the problem (there may be some uncertainty 

about precisely which inputs to use, a point to 

which we will return later. However, for the 

moment we will assume that the input variables 

are intuitively selected and are all meaningful). 

The number of hidden units to use is far from 

clear. As good a starting point as any is to use 

one hidden layer, with the number of units equal 

to half the sum of the number of input and output 

units.  

1.1 Training Multilayer Perceptrons  
Once the number of layers, and number of units 

in each layer, has been selected, the network's 

weights and thresholds must be set so as to 

minimize the prediction error made by the 

network. This is the role of the training 

algorithms. The historical cases that you have 

gathered are used to automatically adjust the 

weights and thresholds in order to minimize this 

error. This process is equivalent to fitting the 

model represented by the network to the training 

data available. The error of a particular 

configuration of the network can be determined 

by running all the training cases through the 

network, comparing the actual output generated 

with the desired or target outputs. The 

differences are combined together by an error 

function to give the network error. The most 

common error functions are the sum squared 

error (used for regression problems), where the 

individual errors of output units on each case are 

squared and summed together, and the cross 

entropy functions (used for maximum likelihood 

classification).  

In traditional modeling approaches (e.g., linear 

modeling) it is possible to algorithmically 

determine the model configuration that 

absolutely minimizes this error. The price paid 

for the greater (non-linear) modeling power of 

neural networks is that although we can adjust a 

network to lower its error, we can never be sure 

that the error could not be lower still.  

A helpful concept here is the error surface. Each 

of the N weights and thresholds of the network 

(i.e., the free parameters of the model) is taken to 

be a dimension in space. The N+1th dimension 

is the network error. For any possible 

configuration of weights the error can be plotted 

in the N+1th dimension, forming an error 

surface. The objective of network training is to 

find the lowest point in this many-dimensional 

surface.  

In a linear model with sum squared error 

function, this error surface is a parabola (a 

quadratic), which means that it is a smooth bowl-

shape with a single minimum. It is therefore 

"easy" to locate the minimum.  



Neural network error surfaces are much more 

complex, and are characterized by a number of 

unhelpful features, such as local minima (which 

are lower than the surrounding terrain, but above 

the global minimum), flat-spots and plateaus, 

saddle-points, and long narrow ravines.  

It is not possible to analytically determine where 

the global minimum of the error surface is, and 

so neural network training is essentially an 

exploration of the error surface. From an initially 

random configuration of weights and thresholds 

(i.e., a random point on the error surface), the 

training algorithms incrementally seek for the 

global minimum. Typically, the gradient (slope) 

of the error surface is calculated at the current 

point, and used to make a downhill move. 

Eventually, the algorithm stops in a low point, 

which may be a local minimum (but hopefully is 

the global minimum).  

2. The Back Propagation Algorithm  

The best-known example of a neural network 

training algorithm is back propagation. Modern 

second-order algorithms such as conjugate 

gradient descent and Levenberg-Marquardt 

(both included in ST Neural Networks) are 

substantially faster (e.g., an order of magnitude 

faster) for many problems, but back propagation 

still has advantages in some circumstances, and 

is the easiest algorithm to understand. We will 

introduce this now, and discuss the more 

advanced algorithms later. There are also 

heuristic modifications of back propagation 

which work well for some problem domains, 

such as quick propagation (Fahlman, 1988) and 

Delta-Bar-Delta (Jacobs, 1988) and are also 

included in ST Neural Networks.  

In back propagation, the gradient vector of the 

error surface is calculated. This vector points 

along the line of steepest descent from the 

current point, so we know that if we move along 

it a "short" distance, we will decrease the error. 

A sequence of such moves (slowing as we near 

the bottom) will eventually find a minimum of 

some sort. The difficult part is to decide how 

large the steps should be.  

Large steps may converge more quickly, but may 

also overstep the solution or (if the error surface 

is very eccentric) go off in the wrong direction. 

A classic example of this in neural network 

training is where the algorithm progresses very 

slowly along a steep, narrow, valley, bouncing 

from one side across to the other. In contrast, 

very small steps may go in the correct direction, 

but they also require a large number of iterations. 

In practice, the step size is proportional to the 

slope (so that the algorithms settles down in a 

minimum) and to a special constant: the learning 

rate. The correct setting for the learning rate is 

application-dependent, and is typically chosen by 

experiment; it may also be time-varying, getting 

smaller as the algorithm progresses.  

The algorithm is also usually modified by 

inclusion of a momentum term: this encourages 

movement in a fixed direction, so that if several 

steps are taken in the same direction, the 

algorithm "picks up speed", which gives it the 

ability to (sometimes) escape local minimum, 

and also to move rapidly over flat spots and 

plateaus.  

The algorithm therefore progresses iteratively, 

through a number of epochs. On each epoch, the 

training cases are each submitted in turn to the 

network, and target and actual outputs compared 

and the error calculated. This error, together with 

the error surface gradient, is used to adjust the 

weights, and then the process repeats. The initial 

network configuration is random, and training 

stops when a given number of epochs elapses, or 

when the error reaches an acceptable level, or 

when the error stops improving (you can select 

which of these stopping conditions to use).  

3. Over-learning and Generalization  

One major problem with the approach outlined 

above is that it doesn't actually minimize the 

error that we are really interested in - which is 

the expected error the network will make when 

new cases are submitted to it. In other words, the 

most desirable property of a network is its ability 

to generalize to new cases. In reality, the 

network is trained to minimize the error on the 

training set, and short of having a perfect and 

infinitely large training set, this is not the same 

thing as minimizing the error on the real error 

surface - the error surface of the underlying and 

unknown model.  

The most important manifestation of this 

distinction is the problem of over-learning, or 

over-fitting. It is easiest to demonstrate this 

concept using polynomial curve fitting rather 



than neural networks, but the concept is precisely 

the same.  

A polynomial is an equation with terms 

containing only constants and powers of the 

variables. For example:  

y=2x+3 

y=3x
2
+4x+1  

Different polynomials have different shapes, 

with larger powers (and therefore larger numbers 

of terms) having steadily more eccentric shapes. 

Given a set of data, we may want to fit a 

polynomial curve (i.e., a model) to explain the 

data. The data is probably noisy, so we don't 

necessarily expect the best model to pass exactly 

through all the points. A low-order polynomial 

may not be sufficiently flexible to fit close to the 

points, whereas a high-order polynomial is 

actually too flexible, fitting the data exactly by 

adopting a highly eccentric shape that is actually 

unrelated to the underlying function.  

 

Neural networks have precisely the same 

problem. A network with more weights models a 

more complex function, and is therefore prone to 

over-fitting. A network with less weights may 

not be sufficiently powerful to model the 

underlying function. For example, a network 

with no hidden layers actually models a simple 

linear function.  

How then can we select the right complexity of 

network? A larger network will almost 

invariably achieve a lower error eventually, but 

this may indicate over-fitting rather than good 

modeling.  

The answer is to check progress against an 

independent data set, the selection set. Some of 

the cases are reserved, and not actually used for 

training in the back propagation algorithm. 

Instead, they are used to keep an independent 

check on the progress of the algorithm. It is 

invariably the case that the initial performance of 

the network on training and selection sets is the 

same (if it is not at least approximately the same, 

the division of cases between the two sets is 

probably biased). As training progresses, the 

training error naturally drops, and providing 

training is minimizing the true error function, the 

selection error drops too. However, if the 

selection error stops dropping, or indeed starts to 

rise, this indicates that the network is starting to 

overfit the data, and training should cease. When 

over-fitting occurs during the training process 

like this, it is called over-learning. In this case, it 

is usually advisable to decrease the number of 

hidden units and/or hidden layers, as the network 

is over-powerful for the problem at hand. In 

contrast, if the network is not sufficiently 

powerful to model the underlying function, over-

learning is not likely to occur, and neither 

training nor selection errors will drop to a 

satisfactory level.  

The problems associated with local minima, and 

decisions over the size of network to use, imply 

that using a neural network typically involves 

experimenting with a large number of different 

networks, probably training each one a number 

of times (to avoid being fooled by local minima), 

and observing individual performances. The key 

guide to performance here is the selection error. 

However, following the standard scientific 

precept that, all else being equal, a simple model 

is always preferable to a complex model, you can 

also select a smaller network in preference to a 

larger one with a negligible improvement in 

selection error.  

A problem with this approach of repeated 

experimentation is that the selection set plays a 

key role in selecting the model, which means that 

it is actually part of the training process. Its 

reliability as an independent guide to 

performance of the model is therefore 

compromised - with sufficient experiments, you 

may just hit upon a lucky network that happens 

to perform well on the selection set. To add 

confidence in the performance of the final 

model, it is therefore normal practice (at least 

where the volume of training data allows it) to 

reserve a third set of cases - the test set. The final 

model is tested with the test set data, to ensure 

that the results on the selection and training set 

are real, and not artifacts of the training process. 

Of course, to fulfill this role properly the test set 

should be used only once - if it is in turn used to 

adjust and reiterate the training process, it 

effectively becomes selection data!  



This division into multiple subsets is very 

unfortunate, given that we usually have less data 

than we would ideally desire even for a single 

subset. We can get around this problem by 

resampling. Experiments can be conducted using 

different divisions of the available data into 

training, selection, and test sets. There are a 

number of approaches to this subset, including 

random (monte-carlo) resampling, cross-

validation, and bootstrap. If we make design 

decisions, such as the best configuration of 

neural network to use, based upon a number of 

experiments with different subset examples, the 

results will be much more reliable. We can then 

either use those experiments solely to guide the 

decision as to which network types to use, and 

train such networks from scratch with new 

samples (this removes any sampling bias); or, we 

can retain the best networks found during the 

sampling process, but average their results in an 

emsemble, which at least mitigates the sampling 

bias.  

To summarize, network design (once the input 

variables have been selected) follows a number 

of stages:  

 Select an initial configuration (typically, 

one hidden layer with the number of 

hidden units set to half the sum of the 

number of input and output units).  

 Iteratively conduct a number of 

experiments with each configuration, 

retaining the best network (in terms of 

selection error) found. A number of 

experiments are required with each 

configuration to avoid being fooled if 

training locates a local minimum, and it 

is also best to resample.  

 On each experiment, if under-learning 

occurs (the network doesn't achieve an 

acceptable performance level) try 

adding more neurons to the hidden 

layer(s). If this doesn't help, try adding 

an extra hidden layer.  

 If over-learning occurs (selection error 

starts to rise) try removing hidden units 

(and possibly layers).  

 Once you have experimentally 

determined an effective configuration 

for your networks, resample and 

generate new networks with that 

configuration.  

4. Data Selection  

All the above stages rely on a key assumption. 

Specifically, the training, verification and test 

data must be representative of the underlying 

model (and, further, the three sets must be 

independently representative). The old computer 

science adage "garbage in, garbage out" could 

not apply more strongly than in neural modeling. 

If training data is not representative, than the 

model's worth is at best compromised. At worst, 

it may be useless. It is worth spelling out the 

kind of problems which can corrupt a training 

set:  

The future is not the past. Training data is 

typically historical. If circumstances have 

changed, relationships which held in the past 

may no longer hold.  

All eventualities must be covered. A neural 

network can only learn from cases that are 

present. If people with incomes over $100,000 

per year are a bad credit risk, and your training 

data includes nobody over $40,000 per year, you 

cannot expect it to make a correct decision when 

it encounters one of the previously-unseen cases. 

Extrapolation is dangerous with any model, but 

some types of neural network may make 

particularly poor predictions in such 

circumstances.  

A network learns the easiest features it can. A 

classic (possibly apocryphal) illustration of this 

is a vision project designed to automatically 

recognize tanks. A network is trained on a 

hundred pictures including tanks, and a hundred 

not. It achieves a perfect 100% score. When 

tested on new data, it proves hopeless. The 

reason? The pictures of tanks are taken on dark, 

rainy days; the pictures without on sunny days. 

The network learns to distinguish the (trivial 

matter of) differences in overall light intensity. 

To work, the network would need training cases 

including all weather and lighting conditions 

under which it is expected to operate - not to 

mention all types of terrain, angles of shot, 

distances...  

Unbalanced data sets. Since a network 

minimizes an overall error, the proportion of 

types of data in the set is critical. A network 

trained on a data set with 900 good cases and 

100 bad will bias its decision towards good 

cases, as this allows the algorithm to lower the 



overall error (which is much more heavily 

influenced by the good cases). If the 

representation of good and bad cases is different 

in the real population, the network's decisions 

may be wrong. A good example would be 

disease diagnosis. Perhaps 90% of patients 

routinely tested are clear of a disease. A network 

is trained on an available data set with a 90/10 

split. It is then used in diagnosis on patients 

complaining of specific problems, where the 

likelihood of disease is 50/50. The network will 

react over-cautiously and fail to recognize 

disease in some unhealthy patients. In contrast, if 

trained on the "complainants" data, and then 

tested on "routine" data, the network may raise a 

high number of false positives. In such 

circumstances, the data set may need to be 

crafted to take account of the distribution of data 

(e.g., you could replicate the less numerous 

cases, or remove some of the numerous cases), 

or the network's decisions modified by the 

inclusion of a loss matrix. Often, the best 

approach is to ensure even representation of 

different cases, then to interpret the network's 

decisions accordingly.  

Insights into MLP Training  

More key insights into MLP behavior and 

training can be gained by considering the type of 

functions they model. Recall that the activation 

level of a unit is the weighted sum of the inputs, 

plus a threshold value. This implies that the 

activation level is actually a simple linear 

function of the inputs. The activation is then 

passed through a sigmoid (S-shaped) curve. The 

combination of the multi-dimensional linear 

function and the one-dimensional sigmoid 

function gives the characteristic sigmoid cliff 

response of a first hidden layer MLP unit (the 

figure below illustrates the shape plotted across 

two inputs. An MLP unit with more inputs has a 

higher-dimensional version of this functional 

shape). Altering the weights and thresholds alters 

this response surface. In particular, both the 

orientation of the surface, and the steepness of 

the sloped section, can be altered. A steep slope 

corresponds to large weight values: doubling all 

weight values gives the same orientation but a 

different slope.  

 

A multi-layered network combines a number of 

these response surfaces together, through 

repeated linear combination and non-linear 

activation functions. The next figure illustrates a 

typical response surface for a network with only 

one hidden layer, of two units, and a single 

output unit, on the classic XOR problem. Two 

separate sigmoid surfaces have been combined 

into a single U-shaped surface.  

During network training, the weights and 

thresholds are first initialized to small, random 

values. This implies that the units' response 

surfaces are each aligned randomly with low 

slope: they are effectively uncommitted. As 

training progresses, the units' response surfaces 

are rotated and shifted into appropriate positions, 

and the magnitudes of the weights grow as they 

commit to modeling particular parts of the target 

response surface.  

In a classification problem, an output unit's task 

is to output a strong signal if a case belongs to its 

class, and a weak signal if it doesn't. In other 

words, it is attempting to model a function that 

has magnitude one for parts of the pattern-space 

that contain its cases, and magnitude zero for 

other parts.  



 

This is known as a discriminant function in 

pattern recognition problems. An ideal 

discriminant function could be said to have a 

plateau structure, where all points on the 

function are either at height zero or height one.  

If there are no hidden units, then the output can 

only model a single sigmoid-cliff with areas to 

one side at low height and areas to the other 

high. There will always be a region in the middle 

(on the cliff) where the height is in-between, but 

as weight magnitudes are increased, this area 

shrinks.  

A sigmoid-cliff like this is effectively a linear 

discriminant. Points to one side of the cliff are 

classified as belonging to the class, points to the 

other as not belonging to it. This implies that a 

network with no hidden layers can only classify 

linearly-separable problems (those where a line - 

or, more generally in higher dimensions, a 

hyperplane - can be drawn which separates the 

points in pattern space).  

A network with a single hidden layer has a 

number of sigmoid-cliffs (one per hidden unit) 

represented in that hidden layer, and these are in 

turn combined into a plateau in the output layer. 

The plateau has a convex hull (i.e., there are no 

dents in it, and no holes inside it). Although the 

plateau is convex, it may extend to infinity in 

some directions (like an extended peninsular). 

Such a network is in practice capable of 

modeling adequately most real-world 

classification problems.  

 

The figure above shows the plateau response 

surface developed by an MLP to solve the XOR 

problem: as can be seen, this neatly sections the 

space along a diagonal.  

A network with two hidden layers has a number 

of plateaus combined together - the number of 

plateaus corresponds to the number of units in 

the second layer, and the number of sides on 

each plateau corresponds to the number of units 

in the first hidden layer. A little thought shows 

that you can represent any shape (including 

concavities and holes) using a sufficiently large 

number of such plateaus.  

A consequence of these observations is that an 

MLP with two hidden layers is theoretically 

sufficient to model any problem (there is a more 

formal proof, the Kolmogorov Theorem). This 

does not necessarily imply that a network with 

more layers might not more conveniently or 

easily model a particular problem. In practice, 

however, most problems seem to yield to a 

single hidden layer, with two an occasional 

resort and three practically unknown.  

A key question in classification is how to 

interpret points on or near the cliff. The standard 

practice is to adopt some confidence levels (the 

accept and reject thresholds) that must be 

exceeded before the unit is deemed to have made 

a decision. For example, if accept/reject 

thresholds of 0.95/0.05 are used, an output unit 

with an output level in excess of 0.95 is deemed 

to be on, below 0.05 it is deemed to be off, and 

in between it is deemed to be undecided.  

A more subtle (and perhaps more useful) 

interpretation is to treat the network outputs as 

probabilities. In this case, the network gives 



more information than simply a decision: it tells 

us how sure (in a formal sense) it is of that 

decision. There are modifications to MLPs that 

allow the neural network outputs to be 

interpreted as probabilities, which means that the 

network effectively learns to model the 

probability density function of the class. 

However, the probabilistic interpretation is only 

valid under certain assumptions about the 

distribution of the data (specifically, that it is 

drawn from the family of exponential 

distributions). Ultimately, a classification 

decision must still be made, but a probabilistic 

interpretation allows a more formal concept of 

minimum cost decision making to be evolved.  

5. Other MLP Training Algorithms  

Earlier in this section, we discussed how the 

back propagation algorithm performs gradient 

descent on the error surface. Speaking loosely, it 

calculates the direction of steepest descent on the 

surface, and jumps down the surface a distance 

proportional to the learning rate and the slope, 

picking up momentum as it maintains a 

consistent direction. As an analogy, it behaves 

like a blindfold kangaroo hopping in the most 

obvious direction. Actually, the descent is 

calculated independently on the error surface for 

each training case, and in random order, but this 

is actually a good approximation to descent on 

the composite error surface. Other MLP training 

algorithms work differently, but all use a strategy 

designed to travel towards a minimum as quickly 

as possible.  

More sophisticated techniques for non-linear 

function optimization have been in use for some 

time. These methods include conjugate gradient 

descent, quasi-Newton, and Levenberg-

Marquardt, which are very successful forms of 

two types of algorithm: line search and model-

trust region approaches. They are collectively 

known as second order training algorithms.  

A line search algorithm works as follows: pick a 

sensible direction to move in the multi-

dimensional landscape. Then project a line in 

that direction, locate the minimum along that line 

(it is relatively trivial to locate a minimum along 

a line, by using some form of bisection 

algorithm), and repeat. What is a sensible 

direction in this context? An obvious choice is 

the direction of steepest descent (the same 

direction that would be chosen by back 

propagation). Actually, this intuitively obvious 

choice proves to be rather poor. Having 

minimized along one direction, the next line of 

steepest descent may spoil the minimization 

along the initial direction (even on a simple 

surface like a parabola a large number of line 

searches may be necessary). A better approach is 

to select conjugate or non-interfering directions - 

hence conjugate gradient descent . 

The idea here is that, once the algorithm has 

minimized along a particular direction, the 

second derivative along that direction should be 

kept at zero. Conjugate directions are selected to 

maintain this zero second derivative on the 

assumption that the surface is parabolic 

(speaking roughly, a nice smooth surface). If this 

condition holds, N epochs are sufficient to reach 

a minimum. In reality, on a complex error 

surface the conjugacy deteriorates, but the 

algorithm still typically requires far less epochs 

than back propagation, and also converges to a 

better minimum (to settle down thoroughly, back 

propagation must be run with an extremely low 

learning rate).  

Quasi-Newton training is based on the 

observation that the direction pointing directly 

towards the minimum on a quadratic surface is 

the so-called Newton direction. This is very 

expensive to calculate analytically, but quasi-

Newton iteratively builds up a good 

approximation to it. Quasi-Newton is usually a 

little faster than conjugate gradient descent, but 

has substantially larger memory requirements 

and is occasionally numerically unstable.  

A model-trust region approach works as follows: 

instead of following a search direction, assume 

that the surface is a simple shape such that the 

minimum can be located (and jumped to) directly 

- if the assumption is true. Try the model out and 

see how good the suggested point is. The model 

typically assumes that the surface is a nice well-

behaved shape (e.g., a parabola), which will be 

true if sufficiently close to a minima. Elsewhere, 

the assumption may be grossly violated, and the 

model could choose wildly inappropriate points 

to move to. The model can only be trusted within 

a region of the current point, and the size of this 

region isn't known. Therefore, choose new points 

to test as a compromise between that suggested 

by the model and that suggested by a standard 

gradient-descent jump. If the new point is good, 

move to it, and strengthen the role of the model 



in selecting a new point; if it is bad, don't move, 

and strengthen the role of the gradient descent 

step in selecting a new point (and make the step 

smaller). Levenberg-Marquardt uses a model 

that assumes that the underlying function is 

locally linear (and therefore has a parabolic error 

surface).  

Levenberg-Marquardt is typically the fastest of 

the training algorithms, although unfortunately it 

has some important limitations, specifically: it 

can only be used on single output networks, can 

only be used with the sum squared error 

function, and has memory requirements 

proportional to W2 (where W is the number of 

weights in the network; this makes it impractical 

for reasonably big networks). Conjugate 

gradient descent is nearly as good, and doesn't 

suffer from these restrictions.  

Back propagation can still be useful, not least in 

providing a quick (if not overwhelmingly 

accurate) solution. It is also a good choice if the 

data set is very large, and contains a great deal of 

redundant data. Back propagation's case-by-case 

error adjustment means that data redundancy 

does it no harm (for example, if you double the 

data set size by replicating every case, each 

epoch will take twice as long, but have the same 

effect as two of the old epochs, so there is no 

loss). In contrast, Levenberg-Marquardt, quasi-

Newton, and conjugate gradient descent all 

perform calculations using the entire data set, so 

increasing the number of cases can significantly 

slow each epoch, but does not necessarily 

improve performance on that epoch (not if data 

is redundant; if data is sparse, then adding data 

will make each epoch better). Back propagation 

can also be equally good if the data set is very 

small, for there is then insufficient information to 

make a highly fine-tuned solution appropriate (a 

more advanced algorithm may achieve a lower 

training error, but the selection error is unlikely 

to improve in the same way). Finally, the second 

order training algorithms seem to be very prone 

to stick in local minima in the early phases - for 

this reason, we recommend the practice of 

starting with a short burst of back propagation, 

before switching to a second order algorithm.  

There are variations on back propagation (quick 

propagation and Delta-bar-Delta) that are 

designed to deal with some of the limitations on 

this technique. In most cases, they are not 

significantly better than back propagation, and 

sometimes they are worse (relative performance 

is application-dependent). They also require 

more control parameters than any of the other 

algorithms, which makes them more difficult to 

use, so they are not described in further detail in 

this section.  

Radial Basis Function Networks  

We have seen in the last section how an MLP 

models the response function using the 

composition of sigmoid-cliff functions - for a 

classification problem, this corresponds to 

dividing the pattern space up using hyperplanes. 

The use of hyperplanes to divide up space is a 

natural approach - intuitively appealing, and 

based on the fundamental simplicity of lines.  

An equally appealing and intuitive approach is to 

divide up space using circles or (more generally) 

hyperspheres. A hypersphere is characterized by 

its center and radius. More generally, just as an 

MLP unit responds (non-linearly) to the distance 

of points from the line of the sigmoid-cliff, in a 

radial basis function network units respond (non-

linearly) to the distance of points from the center 

represented by the radial unit. The response 

surface of a single radial unit is therefore a 

Gaussian (bell-shaped) function, peaked at the 

center, and descending outwards. Just as the 

steepness of the MLP's sigmoid curves can be 

altered, so can the slope of the radial unit's 

Gaussian.  

 

MLP units are defined by their weights and 

threshold, which together give the equation of 

the defining line, and the rate of fall-off of the 

function from that line. Before application of the 

sigmoid activation function, the activation level 

of the unit is determined using a weighted sum, 



which mathematically is the dot product of the 

input vector and the weight vector of the unit; 

these units are therefore referred to as dot 

product units. In contrast, a radial unit is defined 

by its center point and a radius. A point in N 

dimensional space is defined using N numbers, 

which exactly corresponds to the number of 

weights in a dot product unit, so the center of a 

radial unit is stored as weights. The radius (or 

deviation) value is stored as the threshold. It is 

worth emphasizing that the weights and 

thresholds in a radial unit are actually entirely 

different to those in a dot product unit, and the 

terminology is dangerous if you don't remember 

this: Radial weights really form a point, and a 

radial threshold is really a deviation.  

A radial basis function network (RBF), 

therefore, has a hidden layer of radial units, each 

actually modeling a Gaussian response surface. 

Since these functions are nonlinear, it is not 

actually necessary to have more than one hidden 

layer to model any shape of function: sufficient 

radial units will always be enough to model any 

function. The remaining question is how to 

combine the hidden radial unit outputs into the 

network outputs? It turns out to be quite 

sufficient to use a linear combination of these 

outputs (i.e., a weighted sum of the Gaussians) to 

model any nonlinear function. The standard RBF 

has an output layer containing dot product units 

with indentity activation function.  

RBF networks have a number of advantages over 

MLPs. First, as previously stated, they can model 

any nonlinear function using a single hidden 

layer, which removes some design-decisions 

about numbers of layers. Second, the simple 

linear transformation in the output layer can be 

optimized fully using traditional linear modeling 

techniques, which are fast and do not suffer from 

problems such as local minima which plague 

MLP training techniques. RBF networks can 

therefore be trained extremely quickly (i.e., 

orders of magnitude faster than MLPs).  

On the other hand, before linear optimization can 

be applied to the output layer of an RBF 

network, the number of radial units must be 

decided, and then their centers and deviations 

must be set. Although faster than MLP training, 

the algorithms to do this are equally prone to 

discover sub-optimal combinations. Other 

features that distinguish RBF performance from 

MLPs are due to the differing approaches to 

modeling space, with RBFs "clumpy" and MLPs 

"planey."  

Other features which distinguish RBF 

performance from MLPs are due to the differing 

approaches to modeling space, with RBFs 

"clumpy" and MLPs "planey."  

The clumpy approach also implies that RBFs are 

not inclined to extrapolate beyond known data: 

the response drops off rapidly towards zero if 

data points far from the training data are used. 

Often the RBF output layer optimization will 

have set a bias level, hopefully more or less 

equal to the mean output level, so in fact the 

extrapolated output is the observed mean - a 

reasonable working assumption. In contrast, an 

MLP becomes more certain in its response when 

far-flung data is used. Whether this is an 

advantage or disadvantage depends largely on 

the application, but on the whole the MLP's 

uncritical extrapolation is regarded as a bad 

point: extrapolation far from training data is 

usually dangerous and unjustified.  

RBFs are also more sensitive to the curse of 

dimensionality, and have greater difficulties if 

the number of input units is large: this problem is 

discussed further in a later section.  

As mentioned earlier, training of RBFs takes 

place in distinct stages. First, the centers and 

deviations of the radial units must be set; then 

the linear output layer is optimized.  

Centers should be assigned to reflect the natural 

clustering of the data. The two most common 

methods are:  

Sub-sampling. Randomly-chosen training points 

are copied to the radial units. Since they are 

randomly selected, they will represent the 

distribution of the training data in a statistical 

sense. However, if the number of radial units is 

not large, the radial units may actually be a poor 

representation . 

K-Means algorithm. This algorithm tries to 

select an optimal set of points that are placed at 

the centroids of clusters of training data. Given K 

radial units, it adjusts the positions of the centers 

so that:  

 Each training point belongs to a cluster 

center, and is nearer to this center than 

to any other center;  



 Each cluster center is the centroid of the 

training points that belong to it.  

Once centers are assigned, deviations are set. 

The size of the deviation (also known as a 

smoothing factor) determines how spiky the 

Gaussian functions are. If the Gaussians are too 

spiky, the network will not interpolate between 

known points, and the network loses the ability 

to generalize. If the Gaussians are very broad, 

the network loses fine detail. This is actually 

another manifestation of the over/under-fitting 

dilemma. Deviations should typically be chosen 

so that Gaussians overlap with a few nearby 

centers. Methods available are:  

Explicit. Choose the deviation yourself.  

Isotropic. The deviation (same for all units) is 

selected heuristically to reflect the number of 

centers and the volume of space they occupy.  

K-Nearest Neighbor. Each unit's deviation is 

individually set to the mean distance to its K 

nearest neighbors. Hence, deviations are smaller 

in tightly packed areas of space, preserving 

detail, and higher in sparse areas of space 

(interpolating where necessary).  

Once centers and deviations have been set, the 

output layer can be optimized using the standard 

linear optimization technique: the pseudo-inverse 

(singular value decomposition) algorithm.  

However, RBFs as described above suffer 

similar problems to Multilayer Perceptrons if 

they are used for classification - the output of the 

network is a measure of distance from a decision 

hyperplane, rather than a probabilistic 

confidence level. We may therefore choose to 

modify the RBF by including an output layer 

with logistic or softmax (normalized 

exponential) outputs, which is capable of 

probability estimation. We lose the advantage of 

fast linear optimization of the output layer; 

however, the non-linear output layer still has a 

relatively well-behaved error surface, and can be 

optimized quite quickly using a fast iterative 

algorithm such as conjugate gradient descent.  

Radial basis functions can also be hybridized in a 

number of ways. The radial layer (the hidden 

layer) can be trained using the Kohonen and 

Learned Vector Quantization training algorithms, 

which are alternative methods of assigning 

centers to reflect the spread of data, and the 

output layer (whether linear or otherwise) can be 

trained using any of the iterative dot product 

algorithms.  

Conclusion 

Neural network error surfaces are much more 

complex, and are characterized by a number of 

unhelpful features, such as local minima (which 

are lower than the surrounding terrain, but above 

the global minimum), flat-spots and plateaus, 

saddle-points, and long narrow ravines. 

Experience indicates that the RBF's more 

eccentric response surface requires a lot more 

units to adequately model most functions. Of 

course, it is always possible to draw shapes that 

are most easily represented one way or the other, 

but the balance does not favor RBFs. 

Consequently, an RBF solution will tend to be 

slower to execute and more space consuming 

than the corresponding MLP (but it was much 

faster to train, which is sometimes more of a 

constraint). 
 

References 

o Kay(1994a) Information Theoretic Neural 

Networks for Contextually Guided 

Unsupervised Learning: Mathematical and 

Statistical Considerations. Research report.  

o Neural Networks : Simon Haykin, a 

comprehensive foundation 

o P.D. WasserMan, Neural Computing: 

Theory and Practice , Van Nortrand Reinhold 

o Bose, Neural Network fundamentals with 

graphs, algorithms and applications 

o R.H.Neilson, Neurocomputing, Addison 

Wesley 

o J. Anderson et al., Neurocomputing Vol. 1  

& Vol 2, MIT Press, 1986 & 1988 

 


