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Abstract 

Neural networks have seen an explosion of 

interest over the last few years, and are being 

successfully applied across an extraordinary 

range of problem domains, in areas as diverse as 

finance, medicine, engineering, geology and 

physics. Indeed, anywhere that there are 

problems of prediction, classification or control, 

neural networks are being introduced.  

 

The sweeping success of neural networks can be 

attributed to a few key factors:  

 Power. Neural networks are very sophisticated 

modeling techniques capable of modeling 

extremely complex functions. In particular, 

neural networks are nonlinear. For many years 

linear modeling has been the commonly used 

technique in most modeling domains since 

linear models have well-known optimization 

strategies. Where the linear approximation was 

not valid (which was frequently the case) the 

models suffered accordingly. Neural networks 

also keep in check the curse of dimensionality 

problem that bedevils attempts to model 

nonlinear functions with large numbers of 

variables.  

 Ease of use. Neural networks learn by 

example. The neural network user gathers 

representative data, and then invokes training 

algorithms to automatically learn the structure of 

the data. Although the user does need to have 

some heuristic knowledge of how to select and 

prepare data, how to select an appropriate neural 

network, and how to interpret the results, the 

level of user knowledge needed to successfully 

apply neural networks is much lower than would 

be the case using (for example) some more 

traditional nonlinear statistical methods.  

Neural networks are also intuitively appealing, 

based as they are on a crude low-level model of 

biological neural systems. In the future, the 

development of this neurobiological modeling 

may lead to genuinely intelligent computers.  

 

1. Applications for Neural Networks  

 

Neural networks are applicable in virtually every 

situation in which a relationship between the 

predictor variables (independents, inputs) and 

predicted variables (dependents, outputs) exists, 

even when that relationship is very complex and 

not easy to articulate in the usual terms of 

"correlations" or "differences between groups." 

A few representative examples of problems to 

which neural network analysis has been applied 

successfully are:  

 Detection of medical phenomena. A variety of 

health-related indices (e.g., a combination of 

heart rate, levels of various substances in the 

blood, respiration rate) can be monitored. The 

onset of a particular medical condition could be 

associated with a very complex (e.g., nonlinear 

and interactive) combination of changes on a 

subset of the variables being monitored. Neural 

networks have been used to recognize this 

predictive pattern so that the appropriate 

treatment can be prescribed.  

 Stock market prediction. Fluctuations of 

stock   prices and stock indices are another 

example of a complex, multidimensional, but in 

some circumstances at least partially-

deterministic phenomenon. Neural networks are 

being used by many technical analysts to make 

predictions about stock prices based upon a large 

number of factors such as past performance of 

other stocks and various economic indicators.  

 Credit assignment. A variety of pieces of 

information are usually known about an 

applicant for a loan. For instance, the applicant's 

age, education, occupation, and many other facts 

may be available. After training a neural network 

on historical data, neural network analysis can 

identify the most relevant characteristics and use 

those to classify applicants as good or bad credit 

risks.  

 Monitoring the condition of machinery. 
Neural networks can be instrumental in cutting 

costs by bringing additional expertise to 

scheduling the preventive maintenance of 

machines. A neural network can be trained to 

distinguish between the sounds a machine makes 

when it is running normally ("false alarms") 



versus when it is on the verge of a problem. 

After this training period, the expertise of the 

network can be used to warn a technician of an 

upcoming breakdown, before it occurs and 

causes costly unforeseen "downtime."  

 Engine management. Neural networks have 

been used to analyze the input of sensors from an 

engine. The neural network controls the various 

parameters within which the engine functions, in 

order to achieve a particular goal, such as 

minimizing fuel consumption. 

  

2. The Biological Inspiration  

Neural networks grew out of research in 

Artificial Intelligence; specifically, attempts to 

mimic the fault-tolerance and capacity to learn of 

biological neural systems by modeling the low-

level structure of the brain. The main branch of 

Artificial Intelligence research in the 1960s -

1980s produced Expert Systems. These are based 

upon a high-level model of reasoning processes 

(specifically, the concept that our reasoning 

processes are built upon manipulation of 

symbols). It became rapidly apparent that these 

systems, although very useful in some domains, 

failed to capture certain key aspects of human 

intelligence. According to one line of 

speculation, this was due to their failure to 

mimic the underlying structure of the brain. In 

order to reproduce intelligence, it would be 

necessary to build systems with a similar 

architecture.  

The brain is principally composed of a very large 

number (circa 10,000,000,000) of neurons, 

massively interconnected (with an average of 

several thousand interconnects per neuron, 

although this varies enormously). Each neuron is 

a specialized cell which can propagate an 

electrochemical signal. The neuron has a 

branching input structure (the dendrites), a cell 

body, and a branching output structure (the 

axon). The axons of one cell connect to the 

dendrites of another via a synapse. When a 

neuron is activated, it fires an electrochemical 

signal along the axon. This signal crosses the 

synapses to other neurons, which may in turn 

fire. A neuron fires only if the total signal 

received at the cell body from the dendrites 

exceeds a certain level (the firing threshold).  

The strength of the signal received by a neuron 

(and therefore its chances of firing) critically 

depends on the efficacy of the synapses. Each 

synapse actually contains a gap, with 

neurotransmitter chemicals poised to transmit a 

signal across the gap. One of the most influential 

researchers into neurological systems (Donald 

Hebb) postulated that learning consisted 

principally in altering the "strength" of synaptic 

connections. For example, in the classic 

Pavlovian conditioning experiment, where a bell 

is rung just before dinner is delivered to a dog, 

the dog rapidly learns to associate the ringing of 

a bell with the eating of food. The synaptic 

connections between the appropriate part of the 

auditory cortex and the salivation glands are 

strengthened, so that when the auditory cortex is 

stimulated by the sound of the bell the dog starts 

to salivate. Recent research in cognitive science, 

in particular in the area of nonconscious 

information processing, have further 

demonstrated the enormous capacity of the 

human mind to infer ("learn") simple input-

output co variations from extremely complex 

stimuli. 

Thus, from a very large number of extremely 

simple processing units (each performing a 

weighted sum of its inputs, and then firing a 

binary signal if the total input exceeds a certain 

level) the brain manages to perform extremely 

complex tasks. Of course, there is a great deal of 

complexity in the brain which has not been 

discussed here, but it is interesting that artificial 

neural networks can achieve some remarkable 

results using a model not much more complex 

than this.  

 

3. The Basic Artificial Model  

To capture the essence of biological neural 

systems, an artificial neuron is defined as 

follows:  

 It receives a number of inputs (either 

from original data, or from the output of other 

neurons in the neural network). Each input 

comes via a connection that has a strength (or 

weight); these weights correspond to synaptic 

efficacy in a biological neuron. Each neuron also 

has a single threshold value. The weighted sum 

of the inputs is formed, and the threshold 

subtracted, to compose the activation of the 

neuron (also known as the post-synaptic 

potential, or PSP, of the neuron).  

 The activation signal is passed through 

an activation function (also known as a transfer 

function) to produce the output of the neuron.  



If the step activation function is used (i.e., the 

neuron's output is 0 if the input is less than zero, 

and 1 if the input is greater than or equal to 0) 

then the neuron acts just like the biological 

neuron described earlier (subtracting the 

threshold from the weighted sum and comparing 

with zero is equivalent to comparing the 

weighted sum to the threshold). Actually, the 

step function is rarely used in artificial neural 

networks, as will be discussed. Note also that 

weights can be negative, which implies that the 

synapse has an inhibitory rather than excitatory 

effect on the neuron: inhibitory neurons are 

found in the brain.  

This describes an individual neuron. The next 

question is: how should neurons be connected 

together? If a network is to be of any use, there 

must be inputs (which carry the values of 

variables of interest in the outside world) and 

outputs (which form predictions, or control 

signals). Inputs and outputs correspond to 

sensory and motor nerves such as those coming 

from the eyes and leading to the hands. 

However, there also can be hidden neurons that 

play an internal role in the network. The input, 

hidden and output neurons need to be connected 

together.  

The key issue here is feedback (Haykin, 1994). A 

simple network has a feedforward structure: 

signals flow from inputs, forwards through any 

hidden units, eventually reaching the output 

units. Such a structure has stable behavior. 

However, if the network is recurrent (contains 

connections back from later to earlier neurons) it 

can be unstable, and has very complex dynamics. 

Recurrent networks are very interesting to 

researchers in neural networks, but so far it is the 

feedforward structures that have proved most 

useful in solving real problems.  

A typical feedforward network has neurons 

arranged in a distinct layered topology. The input 

layer is not really neural at all: these units simply 

serve to introduce the values of the input 

variables. The hidden and output layer neurons 

are each connected to all of the units in the 

preceding layer. Again, it is possible to define 

networks that are partially-connected to only 

some units in the preceding layer; however, for 

most applications fully-connected networks are 

better.  

 

When the network is executed (used), the input 

variable values are placed in the input units, and 

then the hidden and output layer units are 

progressively executed. Each of them calculates 

its activation value by taking the weighted sum 

of the outputs of the units in the preceding layer, 

and subtracting the threshold. The activation 

value is passed through the activation function to 

produce the output of the neuron. When the 

entire network has been executed, the outputs of 

the output layer act as the output of the entire 

network.  

4. Using a Neural Network  

The previous section describes in simplified 

terms how a neural network turns inputs into 

outputs. The next important question is: how do 

you apply a neural network to solve a problem?  

The type of problem amenable to solution by a 

neural network is defined by the way they work 

and the way they are trained. Neural networks 

work by feeding in some input variables, and 

producing some output variables. They can 

therefore be used where you have some known 

information, and would like to infer some 

unknown information. Some examples are:  

Stock market prediction. You know last week's 

stock prices and today's DOW, NASDAQ, or 

FTSE index; you want to know tomorrow's stock 

prices.  

Credit assignment. You want to know whether 

an applicant for a loan is a good or bad credit 

risk. You usually know applicants' income, 

previous credit history, etc. (because you ask 

them these things).  

Control. You want to know whether a robot 

should turn left, turn right, or move forwards in 

order to reach a target; you know the scene that 

the robot's camera is currently observing.  



Needless to say, not every problem can be solved 

by a neural network. You may wish to know next 

week's lottery result, and know your shoe size, 

but there is no relationship between the two. 

Indeed, if the lottery is being run correctly, there 

is no fact you could possibly know that would 

allow you to infer next week's result. Many 

financial institutions use, or have experimented 

with, neural networks for stock market 

prediction, so it is likely that any trends 

predictable by neural techniques are already 

discounted by the market, and (unfortunately), 

unless you have a sophisticated understanding of 

that problem domain, you are unlikely to have 

any success there either!  

Therefore, another important requirement for the 

use of a neural network therefore is that you 

know (or at least strongly suspect) that there is a 

relationship between the proposed known inputs 

and unknown outputs. This relationship may be 

noisy (you certainly would not expect that the 

factors given in the stock market prediction 

example above could give an exact prediction, as 

prices are clearly influenced by other factors not 

represented in the input set, and there may be an 

element of pure randomness) but it must exist.  

In general, if you use a neural network, you 

won't know the exact nature of the relationship 

between inputs and outputs - if you knew the 

relationship, you would model it directly. The 

other key feature of neural networks is that they 

learn the input/output relationship through 

training. There are two types of training used in 

neural networks, with different types of networks 

using different types of training. These are 

supervised and unsupervised training, of which 

supervised is the most common and will be 

discussed in this section (unsupervised learning 

is described in a later section).  

In supervised learning, the network user 

assembles a set of training data. The training 

data contains examples of inputs together with 

the corresponding outputs, and the network 

learns to infer the relationship between the two. 

Training data is usually taken from historical 

records. In the above examples, this might 

include previous stock prices and DOW, 

NASDAQ, or FTSE indices, records of previous 

successful loan applicants, including 

questionnaires and a record of whether they 

defaulted or not, or sample robot positions and 

the correct reaction.  

The neural network is then trained using one of 

the supervised learning algorithms (of which the 

best known example is back propagation, 

devised by Rumelhart et. al., 1986), which uses 

the data to adjust the network's weights and 

thresholds so as to minimize the error in its 

predictions on the training set. If the network is 

properly trained, it has then learned to model the 

(unknown) function that relates the input 

variables to the output variables, and can 

subsequently be used to make predictions where 

the output is not known.  

 

5. Gathering Data for Neural Networks  

Once you have decided on a problem to solve 

using neural networks, you will need to gather 

data for training purposes. The training data set 

includes a number of cases, each containing 

values for a range of input and output variables. 

The first decisions you will need to make are: 

which variables to use, and how many (and 

which) cases to gather.  

The choice of variables (at least initially) is 

guided by intuition. Your own expertise in the 

problem domain will give you some idea of 

which input variables are likely to be influential. 

As a first pass, you should include any variables 

that you think could have an influence - part of 

the design process will be to whittle this set 

down.  

Neural networks process numeric data in a fairly 

limited range. This presents a problem if data is 

in an unusual range, if there is missing data, or if 

data is non-numeric. Fortunately, there are 

methods to deal with each of these problems. 

Numeric data is scaled into an appropriate range 

for the network, and missing values can be 

substituted for using the mean value (or other 

statistic) of that variable across the other 

available training cases.  

Handling non-numeric data is more difficult. The 

most common form of non-numeric data consists 

of nominal-value variables such as 

Gender={Male, Female}. Nominal-valued 

variables can be represented numerically. 

However, neural networks do not tend to 

perform well with nominal variables that have a 

large number of possible values.  

For example, consider a neural network being 

trained to estimate the value of houses. The price 



of houses depends critically on the area of a city 

in which they are located. A particular city might 

be subdivided into dozens of named locations, 

and so it might seem natural to use a nominal-

valued variable representing these locations. 

Unfortunately, it would be very difficult to train 

a neural network under these circumstances, and 

a more credible approach would be to assign 

ratings (based on expert knowledge) to each 

area; for example, you might assign ratings for 

the quality of local schools, convenient access to 

leisure facilities, etc.  

Other kinds of non-numeric data must either be 

converted to numeric form, or discarded. Dates 

and times, if important, can be converted to an 

offset value from a starting date/time. Currency 

values can easily be converted. Unconstrained 

text fields (such as names) cannot be handled 

and should be discarded.  

The number of cases required for neural network 

training frequently presents difficulties. There 

are some heuristic guidelines, which relate the 

number of cases needed to the size of the 

network (the simplest of these says that there 

should be ten times as many cases as connections 

in the network). Actually, the number needed is 

also related to the (unknown) complexity of the 

underlying function which the network is trying 

to model, and to the variance of the additive 

noise. As the number of variables increases, the 

number of cases required increases nonlinearly, 

so that with even a fairly small number of 

variables (perhaps fifty or less) a huge number of 

cases are required. This problem is known as 

"the curse of dimensionality," and is discussed 

further later in this chapter.  

For most practical problem domains, the number 

of cases required will be hundreds or thousands. 

For very complex problems more may be 

required, but it would be a rare (even trivial) 

problem which required less than a hundred 

cases. If your data is sparser than this, you really 

don't have enough information to train a 

network, and the best you can do is probably to 

fit a linear model. If you have a larger, but still 

restricted, data set, you can compensate to some 

extent by forming an ensemble of networks, each 

trained using a different resampling of the 

available data, and then average across the 

predictions of the networks in the ensemble.  

Many practical problems suffer from data that is 

unreliable: some variables may be corrupted by 

noise, or values may be missing altogether. 

Neural networks are also noise tolerant. 

However, there is a limit to this tolerance; if 

there are occasional outliers far outside the range 

of normal values for a variable, they may bias 

the training. The best approach to such outliers is 

to identify and remove them (either discarding 

the case, or converting the outlier into a missing 

value). If outliers are difficult to detect, a city 

block error function may be used, but this 

outlier-tolerant training is generally less effective 

than the standard approach.  

 

Pre- and Post-processing  

All neural networks take numeric input and 

produce numeric output. The transfer function of 

a unit is typically chosen so that it can accept 

input in any range, and produces output in a 

strictly limited range (it has a squashing effect). 

Although the input can be in any range, there is a 

saturation effect so that the unit is only sensitive 

to inputs within a fairly limited range. The 

illustration below shows one of the most 

common transfer functions, the logistic function 

(also sometimes referred to as the sigmoid 

function, although strictly speaking it is only one 

example of a sigmoid - S-shaped - function). In 

this case, the output is in the range (0,1), and the 

input is sensitive in a range not much larger than 

(-1,+1). The function is also smooth and easily 

differentiable, facts that are critical in allowing 

the network training algorithms to operate (this 

is the reason why the step function is not used in 

practice).  

 

The limited numeric response range, together 

with the fact that information has to be in 

numeric form, implies that neural solutions 

require preprocessing and post-processing stages 

to be used in real applications. Two issues need 

to be addressed:  



Scaling. Numeric values have to be scaled into a 

range which is appropriate for the network. 

Typically, raw variable values are scaled 

linearly. In some circumstances, nonlinear 

scaling may be appropriate (for example, if you 

know that a variable is exponentially distributed, 

you might take the logarithn.  

In some circumstances, non-linear scaling may 

be appropriate (for example, if you know that a 

variable is exponentially distributed, you might 

take the logarithm). Non-linear scaling is not 

supported in ST Neural Networks. Instead, you 

should scale the variable using STATISTICA's 

data transformation facilities before transferring 

the data to ST Neural Networks.  

Nominal variables. Nominal variables may be 

two-state (e.g., Gender={Male,Female}) or 

many-state (i.e., more than two states). A two-

state nominal variable is easily represented by 

transformation into a numeric value (e.g., 

Male=0, Female=1). Many-state nominal 

variables are more difficult to handle. They can 

be represented using an ordinal encoding (e.g., 

Dog=0,Budgie=1,Cat=2) but this implies a 

(probably) false ordering on the nominal values - 

in this case, that Budgies are in some sense 

midway between Dogs and Cats. A better 

approach, known as one-of-N encoding, is to use 

a number of numeric variables to represent the 

single nominal variable. The number of numeric 

variables equals the number of possible values; 

one of the N variables is set, and the others 

cleared (e.g., Dog={1,0,0}, Budgie={0,1,0}, 

Cat={0,0,1}). ST Neural Networks has facilities 

to convert both two-state and many-state 

nominal variables for use in the neural network. 

Unfortunately, a nominal variable with a large 

number of states would require a prohibitive 

number of numeric variables for one-of-N 

encoding, driving up the network size and 

making training difficult. In such a case it is 

possible (although unsatisfactory) to model the 

nominal variable using a single numeric ordinal; 

a better approach is to look for a different way to 

represent the information.  

Prediction problems may be divided into two 

main categories:  

Classification. In classification, the objective is 

to determine to which of a number of discrete 

classes a given input case belongs. Examples 

include credit assignment (is this person a good 

or bad credit risk), cancer detection (tumor, 

clear), signature recognition (forgery, true). In all 

these cases, the output required is clearly a single 

nominal variable. The most common 

classification tasks are (as above) two-state, 

although many-state tasks are also not unknown.  

Regression. In regression, the objective is to 

predict the value of a (usually) continuous 

variable: tomorrow's stock price, the fuel 

consumption of a car, next year's profits. In this 

case, the output required is a single numeric 

variable.  

6. Conclusion  

Neural networks can actually perform a number 

of regression and/or classification tasks at once, 

although commonly each network performs only 

one. In the vast majority of cases, therefore, the 

network will have a single output variable, 

although in the case of many-state classification 

problems, this may correspond to a number of 

output units (the post-processing stage takes care 

of the mapping from output units to output 

variables). If you do define a single network with 

multiple output variables, it may suffer from 

cross-talk (the hidden neurons experience 

difficulty learning, as they are attempting to 

model at least two functions at once). The best 

solution is usually to train separate networks for 

each output, then to combine them into an 

ensemble so that they can be run as a unit.  
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