
Neural Networks: Applications & Processes
Deepak Garg, Lalit Garg, Kant Rajni

Computer Science & Engineering Department,

Thapar Institute of Engineering & technology

{dgarg,lgarg } @mail.tiet.ac.in

Abstract

Neural networks have seen an explosion of

interest over the last few years, and are being

successfully applied across an extraordinary

range of problem domains, in areas as diverse as

finance, medicine, engineering, geology and

physics. Indeed, anywhere that there are

problems of prediction, classification or control,

neural networks are being introduced.

The sweeping success of neural networks can be

attributed to a few key factors:

 Power. Neural networks are very sophisticated

modeling techniques capable of modeling

extremely complex functions. In particular,

neural networks are nonlinear. For many years

linear modeling has been the commonly used

technique in most modeling domains since

linear models have well-known optimization

strategies. Where the linear approximation was

not valid (which was frequently the case) the

models suffered accordingly. Neural networks

also keep in check the curse of dimensionality

problem that bedevils attempts to model

nonlinear functions with large numbers of

variables.

 Ease of use. Neural networks learn by

example. The neural network user gathers

representative data, and then invokes training

algorithms to automatically learn the structure of

the data. Although the user does need to have

some heuristic knowledge of how to select and

prepare data, how to select an appropriate neural

network, and how to interpret the results, the

level of user knowledge needed to successfully

apply neural networks is much lower than would

be the case using (for example) some more

traditional nonlinear statistical methods.

Neural networks are also intuitively appealing,

based as they are on a crude low-level model of

biological neural systems. In the future, the

development of this neurobiological modeling

may lead to genuinely intelligent computers.

1. Applications for Neural Networks

Neural networks are applicable in virtually every

situation in which a relationship between the

predictor variables (independents, inputs) and

predicted variables (dependents, outputs) exists,

even when that relationship is very complex and

not easy to articulate in the usual terms of

"correlations" or "differences between groups."

A few representative examples of problems to

which neural network analysis has been applied

successfully are:

 Detection of medical phenomena. A variety of

health-related indices (e.g., a combination of

heart rate, levels of various substances in the

blood, respiration rate) can be monitored. The

onset of a particular medical condition could be

associated with a very complex (e.g., nonlinear

and interactive) combination of changes on a

subset of the variables being monitored. Neural

networks have been used to recognize this

predictive pattern so that the appropriate

treatment can be prescribed.

 Stock market prediction. Fluctuations of

stock prices and stock indices are another

example of a complex, multidimensional, but in

some circumstances at least partially-

deterministic phenomenon. Neural networks are

being used by many technical analysts to make

predictions about stock prices based upon a large

number of factors such as past performance of

other stocks and various economic indicators.

 Credit assignment. A variety of pieces of

information are usually known about an

applicant for a loan. For instance, the applicant's

age, education, occupation, and many other facts

may be available. After training a neural network

on historical data, neural network analysis can

identify the most relevant characteristics and use

those to classify applicants as good or bad credit

risks.

 Monitoring the condition of machinery.
Neural networks can be instrumental in cutting

costs by bringing additional expertise to

scheduling the preventive maintenance of

machines. A neural network can be trained to

distinguish between the sounds a machine makes

when it is running normally ("false alarms")

versus when it is on the verge of a problem.

After this training period, the expertise of the

network can be used to warn a technician of an

upcoming breakdown, before it occurs and

causes costly unforeseen "downtime."

 Engine management. Neural networks have

been used to analyze the input of sensors from an

engine. The neural network controls the various

parameters within which the engine functions, in

order to achieve a particular goal, such as

minimizing fuel consumption.

2. The Biological Inspiration

Neural networks grew out of research in

Artificial Intelligence; specifically, attempts to

mimic the fault-tolerance and capacity to learn of

biological neural systems by modeling the low-

level structure of the brain. The main branch of

Artificial Intelligence research in the 1960s -

1980s produced Expert Systems. These are based

upon a high-level model of reasoning processes

(specifically, the concept that our reasoning

processes are built upon manipulation of

symbols). It became rapidly apparent that these

systems, although very useful in some domains,

failed to capture certain key aspects of human

intelligence. According to one line of

speculation, this was due to their failure to

mimic the underlying structure of the brain. In

order to reproduce intelligence, it would be

necessary to build systems with a similar

architecture.

The brain is principally composed of a very large

number (circa 10,000,000,000) of neurons,

massively interconnected (with an average of

several thousand interconnects per neuron,

although this varies enormously). Each neuron is

a specialized cell which can propagate an

electrochemical signal. The neuron has a

branching input structure (the dendrites), a cell

body, and a branching output structure (the

axon). The axons of one cell connect to the

dendrites of another via a synapse. When a

neuron is activated, it fires an electrochemical

signal along the axon. This signal crosses the

synapses to other neurons, which may in turn

fire. A neuron fires only if the total signal

received at the cell body from the dendrites

exceeds a certain level (the firing threshold).

The strength of the signal received by a neuron

(and therefore its chances of firing) critically

depends on the efficacy of the synapses. Each

synapse actually contains a gap, with

neurotransmitter chemicals poised to transmit a

signal across the gap. One of the most influential

researchers into neurological systems (Donald

Hebb) postulated that learning consisted

principally in altering the "strength" of synaptic

connections. For example, in the classic

Pavlovian conditioning experiment, where a bell

is rung just before dinner is delivered to a dog,

the dog rapidly learns to associate the ringing of

a bell with the eating of food. The synaptic

connections between the appropriate part of the

auditory cortex and the salivation glands are

strengthened, so that when the auditory cortex is

stimulated by the sound of the bell the dog starts

to salivate. Recent research in cognitive science,

in particular in the area of nonconscious

information processing, have further

demonstrated the enormous capacity of the

human mind to infer ("learn") simple input-

output co variations from extremely complex

stimuli.

Thus, from a very large number of extremely

simple processing units (each performing a

weighted sum of its inputs, and then firing a

binary signal if the total input exceeds a certain

level) the brain manages to perform extremely

complex tasks. Of course, there is a great deal of

complexity in the brain which has not been

discussed here, but it is interesting that artificial

neural networks can achieve some remarkable

results using a model not much more complex

than this.

3. The Basic Artificial Model

To capture the essence of biological neural

systems, an artificial neuron is defined as

follows:

 It receives a number of inputs (either

from original data, or from the output of other

neurons in the neural network). Each input

comes via a connection that has a strength (or

weight); these weights correspond to synaptic

efficacy in a biological neuron. Each neuron also

has a single threshold value. The weighted sum

of the inputs is formed, and the threshold

subtracted, to compose the activation of the

neuron (also known as the post-synaptic

potential, or PSP, of the neuron).

 The activation signal is passed through

an activation function (also known as a transfer

function) to produce the output of the neuron.

If the step activation function is used (i.e., the

neuron's output is 0 if the input is less than zero,

and 1 if the input is greater than or equal to 0)

then the neuron acts just like the biological

neuron described earlier (subtracting the

threshold from the weighted sum and comparing

with zero is equivalent to comparing the

weighted sum to the threshold). Actually, the

step function is rarely used in artificial neural

networks, as will be discussed. Note also that

weights can be negative, which implies that the

synapse has an inhibitory rather than excitatory

effect on the neuron: inhibitory neurons are

found in the brain.

This describes an individual neuron. The next

question is: how should neurons be connected

together? If a network is to be of any use, there

must be inputs (which carry the values of

variables of interest in the outside world) and

outputs (which form predictions, or control

signals). Inputs and outputs correspond to

sensory and motor nerves such as those coming

from the eyes and leading to the hands.

However, there also can be hidden neurons that

play an internal role in the network. The input,

hidden and output neurons need to be connected

together.

The key issue here is feedback (Haykin, 1994). A

simple network has a feedforward structure:

signals flow from inputs, forwards through any

hidden units, eventually reaching the output

units. Such a structure has stable behavior.

However, if the network is recurrent (contains

connections back from later to earlier neurons) it

can be unstable, and has very complex dynamics.

Recurrent networks are very interesting to

researchers in neural networks, but so far it is the

feedforward structures that have proved most

useful in solving real problems.

A typical feedforward network has neurons

arranged in a distinct layered topology. The input

layer is not really neural at all: these units simply

serve to introduce the values of the input

variables. The hidden and output layer neurons

are each connected to all of the units in the

preceding layer. Again, it is possible to define

networks that are partially-connected to only

some units in the preceding layer; however, for

most applications fully-connected networks are

better.

When the network is executed (used), the input

variable values are placed in the input units, and

then the hidden and output layer units are

progressively executed. Each of them calculates

its activation value by taking the weighted sum

of the outputs of the units in the preceding layer,

and subtracting the threshold. The activation

value is passed through the activation function to

produce the output of the neuron. When the

entire network has been executed, the outputs of

the output layer act as the output of the entire

network.

4. Using a Neural Network

The previous section describes in simplified

terms how a neural network turns inputs into

outputs. The next important question is: how do

you apply a neural network to solve a problem?

The type of problem amenable to solution by a

neural network is defined by the way they work

and the way they are trained. Neural networks

work by feeding in some input variables, and

producing some output variables. They can

therefore be used where you have some known

information, and would like to infer some

unknown information. Some examples are:

Stock market prediction. You know last week's

stock prices and today's DOW, NASDAQ, or

FTSE index; you want to know tomorrow's stock

prices.

Credit assignment. You want to know whether

an applicant for a loan is a good or bad credit

risk. You usually know applicants' income,

previous credit history, etc. (because you ask

them these things).

Control. You want to know whether a robot

should turn left, turn right, or move forwards in

order to reach a target; you know the scene that

the robot's camera is currently observing.

Needless to say, not every problem can be solved

by a neural network. You may wish to know next

week's lottery result, and know your shoe size,

but there is no relationship between the two.

Indeed, if the lottery is being run correctly, there

is no fact you could possibly know that would

allow you to infer next week's result. Many

financial institutions use, or have experimented

with, neural networks for stock market

prediction, so it is likely that any trends

predictable by neural techniques are already

discounted by the market, and (unfortunately),

unless you have a sophisticated understanding of

that problem domain, you are unlikely to have

any success there either!

Therefore, another important requirement for the

use of a neural network therefore is that you

know (or at least strongly suspect) that there is a

relationship between the proposed known inputs

and unknown outputs. This relationship may be

noisy (you certainly would not expect that the

factors given in the stock market prediction

example above could give an exact prediction, as

prices are clearly influenced by other factors not

represented in the input set, and there may be an

element of pure randomness) but it must exist.

In general, if you use a neural network, you

won't know the exact nature of the relationship

between inputs and outputs - if you knew the

relationship, you would model it directly. The

other key feature of neural networks is that they

learn the input/output relationship through

training. There are two types of training used in

neural networks, with different types of networks

using different types of training. These are

supervised and unsupervised training, of which

supervised is the most common and will be

discussed in this section (unsupervised learning

is described in a later section).

In supervised learning, the network user

assembles a set of training data. The training

data contains examples of inputs together with

the corresponding outputs, and the network

learns to infer the relationship between the two.

Training data is usually taken from historical

records. In the above examples, this might

include previous stock prices and DOW,

NASDAQ, or FTSE indices, records of previous

successful loan applicants, including

questionnaires and a record of whether they

defaulted or not, or sample robot positions and

the correct reaction.

The neural network is then trained using one of

the supervised learning algorithms (of which the

best known example is back propagation,

devised by Rumelhart et. al., 1986), which uses

the data to adjust the network's weights and

thresholds so as to minimize the error in its

predictions on the training set. If the network is

properly trained, it has then learned to model the

(unknown) function that relates the input

variables to the output variables, and can

subsequently be used to make predictions where

the output is not known.

5. Gathering Data for Neural Networks

Once you have decided on a problem to solve

using neural networks, you will need to gather

data for training purposes. The training data set

includes a number of cases, each containing

values for a range of input and output variables.

The first decisions you will need to make are:

which variables to use, and how many (and

which) cases to gather.

The choice of variables (at least initially) is

guided by intuition. Your own expertise in the

problem domain will give you some idea of

which input variables are likely to be influential.

As a first pass, you should include any variables

that you think could have an influence - part of

the design process will be to whittle this set

down.

Neural networks process numeric data in a fairly

limited range. This presents a problem if data is

in an unusual range, if there is missing data, or if

data is non-numeric. Fortunately, there are

methods to deal with each of these problems.

Numeric data is scaled into an appropriate range

for the network, and missing values can be

substituted for using the mean value (or other

statistic) of that variable across the other

available training cases.

Handling non-numeric data is more difficult. The

most common form of non-numeric data consists

of nominal-value variables such as

Gender={Male, Female}. Nominal-valued

variables can be represented numerically.

However, neural networks do not tend to

perform well with nominal variables that have a

large number of possible values.

For example, consider a neural network being

trained to estimate the value of houses. The price

of houses depends critically on the area of a city

in which they are located. A particular city might

be subdivided into dozens of named locations,

and so it might seem natural to use a nominal-

valued variable representing these locations.

Unfortunately, it would be very difficult to train

a neural network under these circumstances, and

a more credible approach would be to assign

ratings (based on expert knowledge) to each

area; for example, you might assign ratings for

the quality of local schools, convenient access to

leisure facilities, etc.

Other kinds of non-numeric data must either be

converted to numeric form, or discarded. Dates

and times, if important, can be converted to an

offset value from a starting date/time. Currency

values can easily be converted. Unconstrained

text fields (such as names) cannot be handled

and should be discarded.

The number of cases required for neural network

training frequently presents difficulties. There

are some heuristic guidelines, which relate the

number of cases needed to the size of the

network (the simplest of these says that there

should be ten times as many cases as connections

in the network). Actually, the number needed is

also related to the (unknown) complexity of the

underlying function which the network is trying

to model, and to the variance of the additive

noise. As the number of variables increases, the

number of cases required increases nonlinearly,

so that with even a fairly small number of

variables (perhaps fifty or less) a huge number of

cases are required. This problem is known as

"the curse of dimensionality," and is discussed

further later in this chapter.

For most practical problem domains, the number

of cases required will be hundreds or thousands.

For very complex problems more may be

required, but it would be a rare (even trivial)

problem which required less than a hundred

cases. If your data is sparser than this, you really

don't have enough information to train a

network, and the best you can do is probably to

fit a linear model. If you have a larger, but still

restricted, data set, you can compensate to some

extent by forming an ensemble of networks, each

trained using a different resampling of the

available data, and then average across the

predictions of the networks in the ensemble.

Many practical problems suffer from data that is

unreliable: some variables may be corrupted by

noise, or values may be missing altogether.

Neural networks are also noise tolerant.

However, there is a limit to this tolerance; if

there are occasional outliers far outside the range

of normal values for a variable, they may bias

the training. The best approach to such outliers is

to identify and remove them (either discarding

the case, or converting the outlier into a missing

value). If outliers are difficult to detect, a city

block error function may be used, but this

outlier-tolerant training is generally less effective

than the standard approach.

Pre- and Post-processing

All neural networks take numeric input and

produce numeric output. The transfer function of

a unit is typically chosen so that it can accept

input in any range, and produces output in a

strictly limited range (it has a squashing effect).

Although the input can be in any range, there is a

saturation effect so that the unit is only sensitive

to inputs within a fairly limited range. The

illustration below shows one of the most

common transfer functions, the logistic function

(also sometimes referred to as the sigmoid

function, although strictly speaking it is only one

example of a sigmoid - S-shaped - function). In

this case, the output is in the range (0,1), and the

input is sensitive in a range not much larger than

(-1,+1). The function is also smooth and easily

differentiable, facts that are critical in allowing

the network training algorithms to operate (this

is the reason why the step function is not used in

practice).

The limited numeric response range, together

with the fact that information has to be in

numeric form, implies that neural solutions

require preprocessing and post-processing stages

to be used in real applications. Two issues need

to be addressed:

Scaling. Numeric values have to be scaled into a

range which is appropriate for the network.

Typically, raw variable values are scaled

linearly. In some circumstances, nonlinear

scaling may be appropriate (for example, if you

know that a variable is exponentially distributed,

you might take the logarithn.

In some circumstances, non-linear scaling may

be appropriate (for example, if you know that a

variable is exponentially distributed, you might

take the logarithm). Non-linear scaling is not

supported in ST Neural Networks. Instead, you

should scale the variable using STATISTICA's

data transformation facilities before transferring

the data to ST Neural Networks.

Nominal variables. Nominal variables may be

two-state (e.g., Gender={Male,Female}) or

many-state (i.e., more than two states). A two-

state nominal variable is easily represented by

transformation into a numeric value (e.g.,

Male=0, Female=1). Many-state nominal

variables are more difficult to handle. They can

be represented using an ordinal encoding (e.g.,

Dog=0,Budgie=1,Cat=2) but this implies a

(probably) false ordering on the nominal values -

in this case, that Budgies are in some sense

midway between Dogs and Cats. A better

approach, known as one-of-N encoding, is to use

a number of numeric variables to represent the

single nominal variable. The number of numeric

variables equals the number of possible values;

one of the N variables is set, and the others

cleared (e.g., Dog={1,0,0}, Budgie={0,1,0},

Cat={0,0,1}). ST Neural Networks has facilities

to convert both two-state and many-state

nominal variables for use in the neural network.

Unfortunately, a nominal variable with a large

number of states would require a prohibitive

number of numeric variables for one-of-N

encoding, driving up the network size and

making training difficult. In such a case it is

possible (although unsatisfactory) to model the

nominal variable using a single numeric ordinal;

a better approach is to look for a different way to

represent the information.

Prediction problems may be divided into two

main categories:

Classification. In classification, the objective is

to determine to which of a number of discrete

classes a given input case belongs. Examples

include credit assignment (is this person a good

or bad credit risk), cancer detection (tumor,

clear), signature recognition (forgery, true). In all

these cases, the output required is clearly a single

nominal variable. The most common

classification tasks are (as above) two-state,

although many-state tasks are also not unknown.

Regression. In regression, the objective is to

predict the value of a (usually) continuous

variable: tomorrow's stock price, the fuel

consumption of a car, next year's profits. In this

case, the output required is a single numeric

variable.

6. Conclusion

Neural networks can actually perform a number

of regression and/or classification tasks at once,

although commonly each network performs only

one. In the vast majority of cases, therefore, the

network will have a single output variable,

although in the case of many-state classification

problems, this may correspond to a number of

output units (the post-processing stage takes care

of the mapping from output units to output

variables). If you do define a single network with

multiple output variables, it may suffer from

cross-talk (the hidden neurons experience

difficulty learning, as they are attempting to

model at least two functions at once). The best

solution is usually to train separate networks for

each output, then to combine them into an

ensemble so that they can be run as a unit.

References

1. Kay(1994a) Information Theoretic Neural

Networks for Contextually Guided

Unsupervised Learning: Mathematical and

Statistical Considerations. Research report.

2. Neural Networks : Simon Haykin, a

comprehensive foundation

3. P.D. WasserMan, Neural Computing:

Theory and Practice , Van Nortrand Reinhold

4. Bose, Neural Network fundamentals with

graphs, algorithms and applications

5. R.H.Neilson, Neurocomputing, Addison

Wesley

6. J. Anderson et al., Neurocomputing Vol. 1

& Vol 2, MIT Press, 1986 & 1988

