
Probabilistic Networks In ANNs
Deepak Garg, Amardeep Singh

Computer Science & Engineering Department,

Thapar Institute of Engineering & technology

{dgarg,asingh} @mail.tiet.ac.in

Abstract

In the context of classification problems, a useful

interpretation of network outputs was as

estimates of probability of class membership, in

which case the network was actually learning to

estimate a probability density function (p.d.f.). A

similar useful interpretation can be made in

regression problems if the output of the network

is regarded as the expected value of the model at

a given point in input-space. This expected value

is related to the joint probability density function

of the output and inputs.

1. Introduction

In the context of a classification problem, if we

can construct estimates of the p.d.f.s of the

possible classes, we can compare the

probabilities of the various classes, and select the

most-probable. This is effectively what we ask a

neural network to do when it learns a

classification problem - the network attempts to

learn (an approximation to) the p.d.f.

A more traditional approach is to construct an

estimate of the p.d.f. from the data. The most

traditional technique is to assume a certain form

for the p.d.f. (typically, that it is a normal

distribution), and then to estimate the model

parameters. The normal distribution is

commonly used as the model parameters (mean

and standard deviation) can be estimated using

analytical techniques. The problem is that the

assumption of normality is often not justified.

An alternative approach to p.d.f. estimation is

kernel-based approximation. We can reason

loosely that the presence of particular case

indicates some probability density at that point: a

cluster of cases close together indicate an area of

high probability density. Close to a case, we can

have high confidence in some probability

density, with a lesser and diminishing level as

we move away. In kernel-based estimation,

simple functions are located at each available

case, and added together to estimate the overall

p.d.f. Typically, the kernel functions are each

Gaussians (bell-shapes). If sufficient training

points are available, this will indeed yield an

arbitrarily good approximation to the true p.d.f.

This kernel-based approach to p.d.f.

approximation is very similar to radial basis

function networks, and motivates the

probabilistic neural network (PNN) and

generalized regression neural network (GRNN),

both devised by Speckt (1990 and 1991). PNNs

are designed for classification tasks, and GRNNs

for regression. These two types of network are

really kernel-based approximation methods cast

in the form of neural networks.

In the PNN, there are at least three layers: input,

radial, and output layers. The radial units are

copied directly from the training data, one per

case. Each models a Gaussian function centered

at the training case. There is one output unit per

class. Each is connected to all the radial units

belonging to its class, with zero connections

from all other radial units. Hence, the output

units simply add up the responses of the units

belonging to their own class. The outputs are

each proportional to the kernel-based estimates

of the p.d.f.s of the various classes, and by

normalizing these to sum to 1.0 estimates of

class probability are produced.

The basic PNN can be modified in two ways.

First, the basic approach assumes that the

proportional representation of classes in the

training data matches the actual representation in

the population being modeled (the so-called prior

probabilities). For example, in a disease-

diagnosis network, if 2% of the population has

the disease, then 2% of the training cases should

be positives. If the prior probability is different

from the level of representation in the training

cases, then the network's estimate will be invalid.

To compensate for this, prior probabilities can be

given (if known), and the class weightings are

adjusted to compensate.

Second, any network making estimates based on

a noisy function will inevitably produce some

misclassifications (there may be disease victims

whose tests come out normal, for example).

However, some forms of misclassification may

be regarded as more expensive mistakes than

others (for example, diagnosing somebody

healthy as having a disease, which simply leads

to exploratory surgery may be inconvenient but

not life-threatening; whereas failing to spot

somebody who is suffering from disease may

lead to premature death). In such cases, the raw

probabilities generated by the network can be

weighted by loss factors, which reflect the costs

of misclassification. A fourth layer can be

specified in PNNs which includes a loss matrix.

This is multiplied by the probability estimates in

the third layer, and the class with lowest

estimated cost is selected. (Loss matrices may

also be attached to other types of classification

network).

The only control factor that needs to be selected

for probabilistic neural network training is the

smoothing factor (i.e., the radial deviation of the

Gaussian functions). As with RBF networks, this

factor needs to be selected to cause a reasonable

amount of overlap - too small deviations cause a

very spiky approximation which cannot

generalize, too large deviations smooth out

detail. An appropriate figure is easily chosen by

experiment, by selecting a number which

produces a low selection error, and fortunately

PNNs are not too sensitive to the precise choice

of smoothing factor.

The greatest advantages of PNNs are the fact that

the output is probabilistic (which makes

interpretation of output easy), and the training

speed. Training a PNN actually consists mostly

of copying training cases into the network, and

so is as close to instantaneous as can be

expected.

The greatest disadvantage is network size: a

PNN network actually contains the entire set of

training cases, and is therefore space-consuming

and slow to execute.

PNNs are particularly useful for prototyping

experiments (for example, when deciding which

input parameters to use), as the short training

time allows a great number of tests to be

conducted in a short period of time.

2. Generalized Regression Neural

Networks

Generalized regression neural networks

(GRNNs) work in a similar fashion to PNNs, but

perform regression rather than classification

tasks. As with the PNN, Gaussian kernel

functions are located at each training case. Each

case can be regarded, in this case, as evidence

that the response surface is a given height at that

point in input space, with progressively decaying

evidence in the immediate vicinity. The GRNN

copies the training cases into the network to be

used to estimate the response on new points. The

output is estimated using a weighted average of

the outputs of the training cases, where the

weighting is related to the distance of the point

from the point being estimated (so that points

nearby contribute most heavily to the estimate).

The first hidden layer in the GRNN contains the

radial units. A second hidden layer contains units

that help to estimate the weighted average. This

is a specialized procedure. Each output has a

special unit assigned in this layer that forms the

weighted sum for the corresponding output. To

get the weighted average from the weighted sum,

the weighted sum must be divided through by the

sum of the weighting factors. A single special

unit in the second layer calculates the latter

value. The output layer then performs the actual

divisions (using special division units). Hence,

the second hidden layer always has exactly one

more unit than the output layer. In regression

problems, typically only a single output is

estimated, and so the second hidden layer usually

has two units.

The GRNN can be modified by assigning radial

units that represent clusters rather than each

individual training case: this reduces the size of

the network and increases execution speed.

Centers can be assigned using any appropriate

algorithm (i.e., sub-sampling, K-means or

Kohonen).

GRNNs have advantages and disadvantages

broadly similar to PNNs - the difference being

that GRNNs can only be used for regression

problems, whereas PNNs are used for

classification problems. A GRNN trains almost

instantly, but tends to be large and slow

(although, unlike PNNs, it is not necessary to

have one radial unit for each training case, the

number still needs to be large). Like an RBF

network, a GRNN does not extrapolate.

3. Linear Networks

A general scientific principal is that a simple

model should always be chosen in preference to

a complex model if the latter does not fit the data

better. In terms of function approximation, the

simplest model is the linear model, where the

fitted function is a hyperplane. In classification,

the hyperplane is positioned to divide the two

classes (a linear discriminant function); in

regression, it is positioned to pass through the

data. A linear model is typically represented

using an NxN matrix and an Nx1 bias vector.

A neural network with no hidden layers, and an

output with dot product synaptic function and

identity activation function, actually implements

a linear model. The weights correspond to the

matrix, and the thresholds to the bias vector.

When the network is executed, it effectively

multiplies the input by the weights matrix then

adds the bias vector.

The linear network provides a good benchmark

against which to compare the performance of

your neural networks. It is quite possible that a

problem that is thought to be highly complex can

actually be solved as well by linear techniques as

by neural networks. If you have only a small

number of training cases, you are probably

anyway not justified in using a more complex

model.

4. SOFM Networks

Self Organizing Feature Map (SOFM, or

Kohonen) networks are used quite differently to

the other networks. Whereas all the other

networks are designed for supervised learning

tasks, SOFM networks are designed primarily

for unsupervised learning .

Whereas in supervised learning the training data

set contains cases featuring input variables

together with the associated outputs (and the

network must infer a mapping from the inputs to

the outputs), in unsupervised learning the

training data set contains only input variables.

At first glance this may seem strange. Without

outputs, what can the network learn? The answer

is that the SOFM network attempts to learn the

structure of the data.

One possible use is therefore in exploratory data

analysis. The SOFM network can learn to

recognize clusters of data, and can also relate

similar classes to each other. The user can build

up an understanding of the data, which is used to

refine the network. As classes of data are

recognized, they can be labeled, so that the

network becomes capable of classification tasks.

SOFM networks can also be used for

classification when output classes are

immediately available - the advantage in this

case is their ability to highlight similarities

between classes.

A second possible use is in novelty detection.

SOFM networks can learn to recognize clusters

in the training data, and respond to it. If new

data, unlike previous cases, is encountered, the

network fails to recognize it and this indicates

novelty.

A SOFM network has only two layers: the input

layer, and an output layer of radial units (also

known as the topological map layer). The units

in the topological map layer are laid out in space

- typically in two dimensions (although ST

Neural Networks also supports one-dimensional

Kohonen networks).

SOFM networks are trained using an iterative

algorithm. Starting with an initially-random set

of radial centers, the algorithm gradually adjusts

them to reflect the clustering of the training data.

At one level, this compares with the sub-

sampling and K-Means algorithms used to assign

centers in RBF and GRNN networks, and indeed

the SOFM algorithm can be used to assign

centers for these types of networks. However, the

algorithm also acts on a different level.

The iterative training procedure also arranges the

network so that units representing centers close

together in the input space are also situated close

together on the topological map. You can think

of the network's topological layer as a crude two-

dimensional grid, which must be folded and

distorted into the N-dimensional input space, so

as to preserve as far as possible the original

structure. Clearly any attempt to represent an N-

dimensional space in two dimensions will result

in loss of detail; however, the technique can be

worthwhile in allowing the user to visualize data

which might otherwise be impossible to

understand.

The basic iterative Kohonen algorithm simply

runs through a number of epochs, on each epoch

executing each training case and applying the

following algorithm:

 Select the winning neuron (the one

who's center is nearest to the input

case);

 Adjust the winning neuron to be more

like the input case (a weighted sum of

the old neuron center and the training

case).

The algorithm uses a time-decaying learning

rate, which is used to perform the weighted sum

and ensures that the alterations become more

subtle as the epochs pass. This ensures that the

centers settle down to a compromise

representation of the cases which cause that

neuron to win.

The topological ordering property is achieved by

adding the concept of a neighborhood to the

algorithm. The neighborhood is a set of neurons

surrounding the winning neuron. The

neighborhood, like the learning rate, decays over

time, so that initially quite a large number of

neurons belong to the neighborhood (perhaps

almost the entire topological map); in the latter

stages the neighborhood will be zero (i.e.,

consists solely of the winning neuron itself). In

the Kohonen algorithm, the adjustment of

neurons is actually applied not just to the

winning neuron, but to all the members of the

current neighborhood.

The effect of this neighborhood update is that

initially quite large areas of the network are

"dragged towards" training cases - and dragged

quite substantially. The network develops a

crude topological ordering, with similar cases

activating clumps of neurons in the topological

map. As epochs pass the learning rate and

neighborhood both decrease, so that finer

distinctions within areas of the map can be

drawn, ultimately resulting in fine-tuning of

individual neurons. Often, training is deliberately

conducted in two distinct phases: a relatively

short phase with high learning rates and

neighborhood, and a long phase with low

learning rate and zero or near-zero

neighborhood.

Once the network has been trained to recognize

structure in the data, it can be used as a

visualization tool to examine the data. The Win

Frequencies Datasheet (counts of the number of

times each neuron wins when training cases are

executed) can be examined to see if distinct

clusters have formed on the map. Individual

cases are executed and the topological map

observed, to see if some meaning can be

assigned to the clusters (this usually involves

referring back to the original application area, so

that the relationship between clustered cases can

be established). Once clusters are identified,

neurons in the topological map are labeled to

indicate their meaning (sometimes individual

cases may be labeled, too). Once the topological

map has been built up in this way, new cases can

be submitted to the network. If the winning

neuron has been labeled with a class name, the

network can perform classification. If not, the

network is regarded as undecided.

SOFM networks also make use of the accept

threshold, when performing classification. Since

the activation level of a neuron in a SOFM

network is the distance of the neuron from the

input case, the accept threshold acts as a

maximum recognized distance. If the activation

of the winning neuron is greater than this

distance, the SOFM network is regarded as

undecided. Thus, by labeling all neurons and

setting the accept threshold appropriately, a

SOFM network can act as a novelty detector (it

reports undecided only if the input case is

sufficiently dissimilar to all radial units).

SOFM networks are inspired by some known

properties of the brain. The cerebral cortex is

actually a large flat sheet (about 0.5m squared; it

is folded up into the familiar convoluted shape

only for convenience in fitting into the skull!)

with known topological properties (for example,

the area corresponding to the hand is next to the

arm, and a distorted human frame can be

topologically mapped out in two dimensions on

its surface).

5. Classification in ST Neural Networks

In classification problems, the purpose of the

network is to assign each case to one of a

number of classes (or, more generally, to

estimate the probability of membership of the

case in each class). Nominal output variables are

used to indicate a classification problem. The

nominal values correspond to the various classes.

Nominal variables are normally represented in

networks using one of two techniques, the first

of which is only available for two-state variables;

these techniques are: two-state, one-of-N. In two-

state representation, a single node corresponds to

the variable, and a value of 0.0 is interpreted as

one state, and a value of 1.0 as the other. In one-

of-N encoding, one unit is allocated for each

state, with a particular state represented by 1.0

on that particular unit, and 0.0 on the others.

Input nominal variables are easily converted

using the above methods, both during training

and during execution. Target outputs for units

corresponding to nominal variables are also

easily determined during training. However,

more effort is required to determine the output

class assigned by a network during execution.

The output units each have continuous activation

values between 0.0 and 1.0. In order to definitely

assign a class from the outputs, the network must

decide if the outputs are reasonably close to 0.0

and 1.0. If they are not, the class is regarded as

undecided.

Confidence levels (the accept and reject

thresholds) decide how to interpret the network

outputs. These thresholds can be adjusted to

make the network more or less fussy about when

to assign a classification. The interpretation

differs slightly for two-state and one-of-N

representation:

Two-state. If the unit output is above the accept

threshold, the 1.0 class is deemed to be chosen.

If the output is below the reject threshold, the 0.0

class is chosen. If the output is between the two

thresholds, the class is undecided.

One-of-N. A class is selected if the

corresponding output unit is above the accept

threshold and all the other output units are below

the reject threshold. If this condition is not met,

the class is undecided.

For one-of-N encoding, the use of thresholds is

optional. If not used, the "winner-takes-all"

algorithm is used (the highest activation unit

gives the class, and the network is never

undecided). There is one peculiarity when

dealing with one-of-N encoding. On first reading,

you might expect a network with accept and

reject thresholds set to 0.5 is equivalent to a

"winner takes all" network. Actually, this is not

the case for one-of-N encoded networks (it is the

case for two-state). You can actually set the

accept threshold lower than the reject threshold,

and only a network with accept 0.0 and reject 1.0

is equivalent to a winner-takes-all network. This

is true since the algorithm for assigning a class is

actually:

 Select the unit with the highest output.

If this unit has output greater than or

equal to the accept threshold, and all

other units have output less than the

reject threshold, assign the class

represented by that unit.

With an accept threshold of 0.0, the winning unit

is bound to be accepted, and with a reject

threshold of 1.0, none of the other units can

possibly be rejected, so the algorithm reduces to

a simple selection of the winning unit. In

contrast, if both accept and reject are set to 0.5,

the network may return undecided (if the winner

is below 0.5, or any of the losers are above 0.5).

Although this concept takes some getting used

to, it does allow you to set some subtle

conditions. For example, accept/reject 0.3/0.7

can be read as: "select the class using the

winning unit, provided it has an output level at

least 0.3, and none of the other units have

activation above 0.7" - in other words, the

winner must show some significant level of

activation, and the losers mustn't, for a decision

to be reached.

If the network's output unit activations are

probabilities, the range of possible output

patterns is of course restricted, as they must sum

to 1.0. In that case, winner-takes-all is equivalent

to setting accept and reject both to 1/N, where N

is the number of classes. The above discussion

covers the assignment of classifications in most

types of network: MLPs, RBFs, linear and

Cluster. However, SOFM networks work quite

differently.

In a SOFM network, the winning node in the

topological map (output) layer is the one with the

lowest activation level (which measures the

distance of the input case from the point stored

by the unit). Some or all of the units in the

topological map may be labeled, indicating an

output class. If the distance is small enough, then

the case is assigned to the class (if one is given).

The accept threshold indicates the largest

distance which will result in a positive

classification. If an input case is further than this

distance away from the winning unit, or if the

winning unit is unlabelled (or its label doesn't

match one of the output variable's nominal

values) then the case is unclassified. The reject

threshold is not used SOFM networks.

The discussion on non-SOFM networks has

assumed that a positive classification is indicated

by a figure close to 1.0, and a negative

classification by a figure close to 0.0. This is true

if the logistic output activation function is used,

and is convenient as probabilities range from 0.0

to 1.0. However, in some circumstances a

different range may be used. Also, sometimes

ordering is reversed, with smaller outputs

indicating higher confidence.

First, the range values used are actually the

min/mean and max/SD values stored for each

variable. With a logistic output activation

function, the default values 0.0 and 1.0 are fine.

Some authors actually recommend using the

hyperbolic tangent activation function, which has

the range (-1.0,+1.0) . Training performance may

be enhanced because this function (unlike the

logistic function) is symmetrical. Alternatively

(and we recommend this practice) use hyperbolic

tangent activation function in hidden layers, but

not in the output layer.

Ordering is typically reversed in two situations.

We have just discussed one of these: SOFM

networks, where the output is a distance

measure, with a small value indicating greater

confidence. The same is true in the closely-

related Cluster networks. The second

circumstance is the use of a loss matrix (which

may be added at creation time to PNNs, and also

manually joined to other types of network).

When a loss matrix is used, the network outputs

indicate the expected cost if each class is

selected, and the objective is to select the class

with the lowest cost. In this case, we would

normally expect the accept threshold to be

smaller than the reject threshold.

Conclusion

Estimating probability density functions from

data has a long statistical history, and in this

context fits into the area of Bayesian statistics.

Conventional statistics can, given a known

model, inform us what the chances of certain

outcomes are (e.g., we know that a unbiased die

has a 1/6th chance of coming up with a six).

Bayesian statistics turns this situation on its

head, by estimating the validity of a model given

certain data. More generally, Bayesian statistics

can estimate the probability density of model

parameters given the available data. To minimize

error, the model is then selected whose

parameters maximize this p.d.f.

References

1. Kay(1994a) Information Theoretic Neural

Networks for Contextually Guided

Unsupervised Learning: Mathematical and

Statistical Considerations. Research report.

2. Neural Networks : Simon Haykin, a

comprehensive foundation

3. P.D. WasserMan, Neural Computing:

Theory and Practice , Van Nortrand Reinhold

4. Bose, Neural Network fundamentals with

graphs, algorithms and applications

5. R.H.Neilson, Neurocomputing, Addison

Wesley

6. J. Anderson et al., Neurocomputing Vol. 1

& Vol 2, MIT Press, 1986 & 1988

