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Abstract  

In the context of classification problems, a useful 

interpretation of network outputs was as 

estimates of probability of class membership, in 

which case the network was actually learning to 

estimate a probability density function (p.d.f.). A 

similar useful interpretation can be made in 

regression problems if the output of the network 

is regarded as the expected value of the model at 

a given point in input-space. This expected value 

is related to the joint probability density function 

of the output and inputs.  

1. Introduction 

In the context of a classification problem, if we 

can construct estimates of the p.d.f.s of the 

possible classes, we can compare the 

probabilities of the various classes, and select the 

most-probable. This is effectively what we ask a 

neural network to do when it learns a 

classification problem - the network attempts to 

learn (an approximation to) the p.d.f.  

A more traditional approach is to construct an 

estimate of the p.d.f. from the data. The most 

traditional technique is to assume a certain form 

for the p.d.f. (typically, that it is a normal 

distribution), and then to estimate the model 

parameters. The normal distribution is 

commonly used as the model parameters (mean 

and standard deviation) can be estimated using 

analytical techniques. The problem is that the 

assumption of normality is often not justified.  

An alternative approach to p.d.f. estimation is 

kernel-based approximation. We can reason 

loosely that the presence of particular case 

indicates some probability density at that point: a 

cluster of cases close together indicate an area of  

 

high probability density. Close to a case, we can 

have high confidence in some probability 

density, with a lesser and diminishing level as 

we move away. In kernel-based estimation, 

simple functions are located at each available 

case, and added together to estimate the overall 

p.d.f. Typically, the kernel functions are each 

Gaussians (bell-shapes). If sufficient training 

points are available, this will indeed yield an 

arbitrarily good approximation to the true p.d.f.  

This kernel-based approach to p.d.f. 

approximation is very similar to radial basis 

function networks, and motivates the 

probabilistic neural network (PNN) and 

generalized regression neural network (GRNN), 

both devised by Speckt (1990 and 1991). PNNs 

are designed for classification tasks, and GRNNs 

for regression. These two types of network are 

really kernel-based approximation methods cast 

in the form of neural networks.  

In the PNN, there are at least three layers: input, 

radial, and output layers. The radial units are 

copied directly from the training data, one per 

case. Each models a Gaussian function centered 

at the training case. There is one output unit per 

class. Each is connected to all the radial units 

belonging to its class, with zero connections 

from all other radial units. Hence, the output 

units simply add up the responses of the units 

belonging to their own class. The outputs are 

each proportional to the kernel-based estimates 

of the p.d.f.s of the various classes, and by 

normalizing these to sum to 1.0 estimates of 

class probability are produced.  

The basic PNN can be modified in two ways.  

First, the basic approach assumes that the 

proportional representation of classes in the 

training data matches the actual representation in 

the population being modeled (the so-called prior 

probabilities). For example, in a disease-

diagnosis network, if 2% of the population has 

the disease, then 2% of the training cases should 



be positives. If the prior probability is different 

from the level of representation in the training 

cases, then the network's estimate will be invalid. 

To compensate for this, prior probabilities can be 

given (if known), and the class weightings are 

adjusted to compensate.  

Second, any network making estimates based on 

a noisy function will inevitably produce some 

misclassifications (there may be disease victims 

whose tests come out normal, for example). 

However, some forms of misclassification may 

be regarded as more expensive mistakes than 

others (for example, diagnosing somebody 

healthy as having a disease, which simply leads 

to exploratory surgery may be inconvenient but 

not life-threatening; whereas failing to spot 

somebody who is suffering from disease may 

lead to premature death). In such cases, the raw 

probabilities generated by the network can be 

weighted by loss factors, which reflect the costs 

of misclassification. A fourth layer can be 

specified in PNNs which includes a loss matrix. 

This is multiplied by the probability estimates in 

the third layer, and the class with lowest 

estimated cost is selected. (Loss matrices may 

also be attached to other types of classification 

network).  

The only control factor that needs to be selected 

for probabilistic neural network training is the 

smoothing factor (i.e., the radial deviation of the 

Gaussian functions). As with RBF networks, this 

factor needs to be selected to cause a reasonable 

amount of overlap - too small deviations cause a 

very spiky approximation which cannot 

generalize, too large deviations smooth out 

detail. An appropriate figure is easily chosen by 

experiment, by selecting a number which 

produces a low selection error, and fortunately 

PNNs are not too sensitive to the precise choice 

of smoothing factor.  

The greatest advantages of PNNs are the fact that 

the output is probabilistic (which makes 

interpretation of output easy), and the training 

speed. Training a PNN actually consists mostly 

of copying training cases into the network, and 

so is as close to instantaneous as can be 

expected.  

The greatest disadvantage is network size: a 

PNN network actually contains the entire set of 

training cases, and is therefore space-consuming 

and slow to execute.  

PNNs are particularly useful for prototyping 

experiments (for example, when deciding which 

input parameters to use), as the short training 

time allows a great number of tests to be 

conducted in a short period of time.  

 

2. Generalized Regression Neural 

Networks  

Generalized regression neural networks 

(GRNNs) work in a similar fashion to PNNs, but 

perform regression rather than classification 

tasks. As with the PNN, Gaussian kernel 

functions are located at each training case. Each 

case can be regarded, in this case, as evidence 

that the response surface is a given height at that 

point in input space, with progressively decaying 

evidence in the immediate vicinity. The GRNN 

copies the training cases into the network to be 

used to estimate the response on new points. The 

output is estimated using a weighted average of 

the outputs of the training cases, where the 

weighting is related to the distance of the point 

from the point being estimated (so that points 

nearby contribute most heavily to the estimate).  

The first hidden layer in the GRNN contains the 

radial units. A second hidden layer contains units 

that help to estimate the weighted average. This 

is a specialized procedure. Each output has a 

special unit assigned in this layer that forms the 

weighted sum for the corresponding output. To 

get the weighted average from the weighted sum, 

the weighted sum must be divided through by the 

sum of the weighting factors. A single special 

unit in the second layer calculates the latter 

value. The output layer then performs the actual 

divisions (using special division units). Hence, 

the second hidden layer always has exactly one 

more unit than the output layer. In regression 

problems, typically only a single output is 

estimated, and so the second hidden layer usually 

has two units.  

The GRNN can be modified by assigning radial 

units that represent clusters rather than each 

individual training case: this reduces the size of 

the network and increases execution speed. 

Centers can be assigned using any appropriate 

algorithm (i.e., sub-sampling, K-means or 

Kohonen).  



GRNNs have advantages and disadvantages 

broadly similar to PNNs - the difference being 

that GRNNs can only be used for regression 

problems, whereas PNNs are used for 

classification problems. A GRNN trains almost 

instantly, but tends to be large and slow 

(although, unlike PNNs, it is not necessary to 

have one radial unit for each training case, the 

number still needs to be large). Like an RBF 

network, a GRNN does not extrapolate.  

 

3. Linear Networks  

A general scientific principal is that a simple 

model should always be chosen in preference to 

a complex model if the latter does not fit the data 

better. In terms of function approximation, the 

simplest model is the linear model, where the 

fitted function is a hyperplane. In classification, 

the hyperplane is positioned to divide the two 

classes (a linear discriminant function); in 

regression, it is positioned to pass through the 

data. A linear model is typically represented 

using an NxN matrix and an Nx1 bias vector.  

A neural network with no hidden layers, and an 

output with dot product synaptic function and 

identity activation function, actually implements 

a linear model. The weights correspond to the 

matrix, and the thresholds to the bias vector. 

When the network is executed, it effectively 

multiplies the input by the weights matrix then 

adds the bias vector.  

The linear network provides a good benchmark 

against which to compare the performance of 

your neural networks. It is quite possible that a 

problem that is thought to be highly complex can 

actually be solved as well by linear techniques as 

by neural networks. If you have only a small 

number of training cases, you are probably 

anyway not justified in using a more complex 

model.  

 

4. SOFM Networks  

Self Organizing Feature Map (SOFM, or 

Kohonen) networks are used quite differently to 

the other networks. Whereas all the other 

networks are designed for supervised learning 

tasks, SOFM networks are designed primarily 

for unsupervised learning . 

Whereas in supervised learning the training data 

set contains cases featuring input variables 

together with the associated outputs (and the 

network must infer a mapping from the inputs to 

the outputs), in unsupervised learning the 

training data set contains only input variables.  

At first glance this may seem strange. Without 

outputs, what can the network learn? The answer 

is that the SOFM network attempts to learn the 

structure of the data.  

One possible use is therefore in exploratory data 

analysis. The SOFM network can learn to 

recognize clusters of data, and can also relate 

similar classes to each other. The user can build 

up an understanding of the data, which is used to 

refine the network. As classes of data are 

recognized, they can be labeled, so that the 

network becomes capable of classification tasks. 

SOFM networks can also be used for 

classification when output classes are 

immediately available - the advantage in this 

case is their ability to highlight similarities 

between classes.  

A second possible use is in novelty detection. 

SOFM networks can learn to recognize clusters 

in the training data, and respond to it. If new 

data, unlike previous cases, is encountered, the 

network fails to recognize it and this indicates 

novelty.  

A SOFM network has only two layers: the input 

layer, and an output layer of radial units (also 

known as the topological map layer). The units 

in the topological map layer are laid out in space 

- typically in two dimensions (although ST 

Neural Networks also supports one-dimensional 

Kohonen networks).  

SOFM networks are trained using an iterative 

algorithm. Starting with an initially-random set 

of radial centers, the algorithm gradually adjusts 

them to reflect the clustering of the training data. 

At one level, this compares with the sub-

sampling and K-Means algorithms used to assign 

centers in RBF and GRNN networks, and indeed 

the SOFM algorithm can be used to assign 

centers for these types of networks. However, the 

algorithm also acts on a different level.  

The iterative training procedure also arranges the 

network so that units representing centers close 

together in the input space are also situated close 



together on the topological map. You can think 

of the network's topological layer as a crude two-

dimensional grid, which must be folded and 

distorted into the N-dimensional input space, so 

as to preserve as far as possible the original 

structure. Clearly any attempt to represent an N-

dimensional space in two dimensions will result 

in loss of detail; however, the technique can be 

worthwhile in allowing the user to visualize data 

which might otherwise be impossible to 

understand.  

The basic iterative Kohonen algorithm simply 

runs through a number of epochs, on each epoch 

executing each training case and applying the 

following algorithm:  

 Select the winning neuron (the one 

who's center is nearest to the input 

case);  

 Adjust the winning neuron to be more 

like the input case (a weighted sum of 

the old neuron center and the training 

case).  

The algorithm uses a time-decaying learning 

rate, which is used to perform the weighted sum 

and ensures that the alterations become more 

subtle as the epochs pass. This ensures that the 

centers settle down to a compromise 

representation of the cases which cause that 

neuron to win.  

The topological ordering property is achieved by 

adding the concept of a neighborhood to the 

algorithm. The neighborhood is a set of neurons 

surrounding the winning neuron. The 

neighborhood, like the learning rate, decays over 

time, so that initially quite a large number of 

neurons belong to the neighborhood (perhaps 

almost the entire topological map); in the latter 

stages the neighborhood will be zero (i.e., 

consists solely of the winning neuron itself). In 

the Kohonen algorithm, the adjustment of 

neurons is actually applied not just to the 

winning neuron, but to all the members of the 

current neighborhood.  

The effect of this neighborhood update is that 

initially quite large areas of the network are 

"dragged towards" training cases - and dragged 

quite substantially. The network develops a 

crude topological ordering, with similar cases 

activating clumps of neurons in the topological 

map. As epochs pass the learning rate and 

neighborhood both decrease, so that finer 

distinctions within areas of the map can be 

drawn, ultimately resulting in fine-tuning of 

individual neurons. Often, training is deliberately 

conducted in two distinct phases: a relatively 

short phase with high learning rates and 

neighborhood, and a long phase with low 

learning rate and zero or near-zero 

neighborhood.  

Once the network has been trained to recognize 

structure in the data, it can be used as a 

visualization tool to examine the data. The Win 

Frequencies Datasheet (counts of the number of 

times each neuron wins when training cases are 

executed) can be examined to see if distinct 

clusters have formed on the map. Individual 

cases are executed and the topological map 

observed, to see if some meaning can be 

assigned to the clusters (this usually involves 

referring back to the original application area, so 

that the relationship between clustered cases can 

be established). Once clusters are identified, 

neurons in the topological map are labeled to 

indicate their meaning (sometimes individual 

cases may be labeled, too). Once the topological 

map has been built up in this way, new cases can 

be submitted to the network. If the winning 

neuron has been labeled with a class name, the 

network can perform classification. If not, the 

network is regarded as undecided.  

SOFM networks also make use of the accept 

threshold, when performing classification. Since 

the activation level of a neuron in a SOFM 

network is the distance of the neuron from the 

input case, the accept threshold acts as a 

maximum recognized distance. If the activation 

of the winning neuron is greater than this 

distance, the SOFM network is regarded as 

undecided. Thus, by labeling all neurons and 

setting the accept threshold appropriately, a 

SOFM network can act as a novelty detector (it 

reports undecided only if the input case is 

sufficiently dissimilar to all radial units).  

SOFM networks are inspired by some known 

properties of the brain. The cerebral cortex is 

actually a large flat sheet (about 0.5m squared; it 

is folded up into the familiar convoluted shape 

only for convenience in fitting into the skull!) 

with known topological properties (for example, 

the area corresponding to the hand is next to the 

arm, and a distorted human frame can be 



topologically mapped out in two dimensions on 

its surface).  

 

5. Classification in ST Neural Networks  

In classification problems, the purpose of the 

network is to assign each case to one of a 

number of classes (or, more generally, to 

estimate the probability of membership of the 

case in each class). Nominal output variables are 

used to indicate a classification problem. The 

nominal values correspond to the various classes.  

Nominal variables are normally represented in 

networks using one of two techniques, the first 

of which is only available for two-state variables; 

these techniques are: two-state, one-of-N. In two-

state representation, a single node corresponds to 

the variable, and a value of 0.0 is interpreted as 

one state, and a value of 1.0 as the other. In one-

of-N encoding, one unit is allocated for each 

state, with a particular state represented by 1.0 

on that particular unit, and 0.0 on the others.  

Input nominal variables are easily converted 

using the above methods, both during training 

and during execution. Target outputs for units 

corresponding to nominal variables are also 

easily determined during training. However, 

more effort is required to determine the output 

class assigned by a network during execution.  

The output units each have continuous activation 

values between 0.0 and 1.0. In order to definitely 

assign a class from the outputs, the network must 

decide if the outputs are reasonably close to 0.0 

and 1.0. If they are not, the class is regarded as 

undecided.  

Confidence levels (the accept and reject 

thresholds) decide how to interpret the network 

outputs. These thresholds can be adjusted to 

make the network more or less fussy about when 

to assign a classification. The interpretation 

differs slightly for two-state and one-of-N 

representation:  

Two-state. If the unit output is above the accept 

threshold, the 1.0 class is deemed to be chosen. 

If the output is below the reject threshold, the 0.0 

class is chosen. If the output is between the two 

thresholds, the class is undecided.  

One-of-N. A class is selected if the 

corresponding output unit is above the accept 

threshold and all the other output units are below 

the reject threshold. If this condition is not met, 

the class is undecided.  

For one-of-N encoding, the use of thresholds is 

optional. If not used, the "winner-takes-all" 

algorithm is used (the highest activation unit 

gives the class, and the network is never 

undecided). There is one peculiarity when 

dealing with one-of-N encoding. On first reading, 

you might expect a network with accept and 

reject thresholds set to 0.5 is equivalent to a 

"winner takes all" network. Actually, this is not 

the case for one-of-N encoded networks (it is the 

case for two-state). You can actually set the 

accept threshold lower than the reject threshold, 

and only a network with accept 0.0 and reject 1.0 

is equivalent to a winner-takes-all network. This 

is true since the algorithm for assigning a class is 

actually:  

 Select the unit with the highest output. 

If this unit has output greater than or 

equal to the accept threshold, and all 

other units have output less than the 

reject threshold, assign the class 

represented by that unit.  

With an accept threshold of 0.0, the winning unit 

is bound to be accepted, and with a reject 

threshold of 1.0, none of the other units can 

possibly be rejected, so the algorithm reduces to 

a simple selection of the winning unit. In 

contrast, if both accept and reject are set to 0.5, 

the network may return undecided (if the winner 

is below 0.5, or any of the losers are above 0.5).  

Although this concept takes some getting used 

to, it does allow you to set some subtle 

conditions. For example, accept/reject 0.3/0.7 

can be read as: "select the class using the 

winning unit, provided it has an output level at 

least 0.3, and none of the other units have 

activation above 0.7" - in other words, the 

winner must show some significant level of 

activation, and the losers mustn't, for a decision 

to be reached.  

If the network's output unit activations are 

probabilities, the range of possible output 

patterns is of course restricted, as they must sum 

to 1.0. In that case, winner-takes-all is equivalent 

to setting accept and reject both to 1/N, where N 



is the number of classes. The above discussion 

covers the assignment of classifications in most 

types of network: MLPs, RBFs, linear and 

Cluster. However, SOFM networks work quite 

differently.  

In a SOFM network, the winning node in the 

topological map (output) layer is the one with the 

lowest activation level (which measures the 

distance of the input case from the point stored 

by the unit). Some or all of the units in the 

topological map may be labeled, indicating an 

output class. If the distance is small enough, then 

the case is assigned to the class (if one is given). 

The accept threshold indicates the largest 

distance which will result in a positive 

classification. If an input case is further than this 

distance away from the winning unit, or if the 

winning unit is unlabelled (or its label doesn't 

match one of the output variable's nominal 

values) then the case is unclassified. The reject 

threshold is not used SOFM networks.  

The discussion on non-SOFM networks has 

assumed that a positive classification is indicated 

by a figure close to 1.0, and a negative 

classification by a figure close to 0.0. This is true 

if the logistic output activation function is used, 

and is convenient as probabilities range from 0.0 

to 1.0. However, in some circumstances a 

different range may be used. Also, sometimes 

ordering is reversed, with smaller outputs 

indicating higher confidence.  

First, the range values used are actually the 

min/mean and max/SD values stored for each 

variable. With a logistic output activation 

function, the default values 0.0 and 1.0 are fine. 

Some authors actually recommend using the 

hyperbolic tangent activation function, which has 

the range (-1.0,+1.0) . Training performance may 

be enhanced because this function (unlike the 

logistic function) is symmetrical. Alternatively 

(and we recommend this practice) use hyperbolic 

tangent activation function in hidden layers, but 

not in the output layer.  

Ordering is typically reversed in two situations. 

We have just discussed one of these: SOFM 

networks, where the output is a distance 

measure, with a small value indicating greater 

confidence. The same is true in the closely-

related Cluster networks. The second 

circumstance is the use of a loss matrix (which 

may be added at creation time to PNNs, and also 

manually joined to other types of network). 

When a loss matrix is used, the network outputs 

indicate the expected cost if each class is 

selected, and the objective is to select the class 

with the lowest cost. In this case, we would 

normally expect the accept threshold to be 

smaller than the reject threshold.  

Conclusion 

Estimating probability density functions from 

data has a long statistical history, and in this 

context fits into the area of Bayesian statistics. 

Conventional statistics can, given a known 

model, inform us what the chances of certain 

outcomes are (e.g., we know that a unbiased die 

has a 1/6th chance of coming up with a six). 

Bayesian statistics turns this situation on its 

head, by estimating the validity of a model given 

certain data. More generally, Bayesian statistics 

can estimate the probability density of model 

parameters given the available data. To minimize 

error, the model is then selected whose 

parameters maximize this p.d.f.  
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