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Abstract 

 

Random number generators based on linear recurrences modulo 2 are among the fastest 

long-period generators currently available. The uniformity and independence of the 

points they produce, over their entire period length, can be measured by theoretical 

figures of merit that are easy to compute, and those having good values for these figures 

of merit are statistically reliable in general. Some of these generators can also provide 

disjoint streams and substreams efficiently. In this paper, we review the most interesting 

construction methods for these generators, examine their theoretical and empirical 

properties, and make comparisons. 

Random number generation is the art and science of deterministically generating a 

sequence of numbers that is difficult to distinguish from a true random sequence. This 

thesis introduces the field of random number generation, and studies three types of 

random number generators in depth. It also includes mathematical techniques for 

transforming the output of generators to arbitrary distributions, and methods of evaluating 

and comparing random number generators. It concludes with a summary and historical 

perspective on the field of random number generation. The mathematics in this thesis is 

drawn mainly from number theory, with a few fundamental ideas taken from probability 

and statistics. 
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                                                                                                             Chapter1                                                                                                    

Introduction  

 

1.1 What is a random number generator?  

Most random number generators generate a sequence of integers by the following 

recurrence:  

               X0 = given,         Xn+1 = a Xn  + b (mod N)    n = 0,1,2,...     (i)  

The notation mod N means that the expression on the right of the equation is divided by 

N, and then replaced with the remainder.  

To understand the mechanics consider the following simple Example. (Choose Example 

on the applet to study this example further.)  

                            X0 = 79, N = 100, a = 263, and b = 71  

Then  

                            X1 = 79*263 + 71 (mod 100) = 20848 (mod 100) = 48,  

                            X2 = 48*263 + 71 (mod 100) = 12695 (mod 100) = 95,  

                            X3 = 95*263 + 71 (mod 100) = 25056 (mod 100) = 56,  

                            X4 = 56*263 + 71 (mod 100) = 14799 (mod 100) = 99,  

Subsequent numbers are: 8, 75, 96, 68, 36, 39, 28, 35, 76, 59, 88, 15, 16, 79, 48. The 

sequence then repeats. (This indicates a weakness of our example generator: If the 

random numbers are between 0 and 99 then one would like every number between 0 and 

99 to be a possible member of the sequence. The parameters a, b and N determine the 

characteristics of the random number generator, and the choice of x0 (the seed) 

determines the particular sequence of random numbers that is generated. If the generator 
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is run with the same values of the parameters, and the same seed, it will generate a 

sequence that's identical to the previous one. In that sense the numbers generated 

certainly are not random. They are therefore sometimes referred to as pseudo random 

numbers.  

1.2 Transformation of the original sequence 

Of course one may want random numbers not as integers in a given range, but for 

example as uniformly distributed real numbers in a certain interval, or perhaps as real 

numbers of (almost) arbitrary size, but clustered around the origin. Distributions of that 

sort can be obtained by suitably transforming the original random numbers. For example, 

to transform a sequence defined as above into an evenly distributed set of real numbers in 

the interval from 0 to 1 simply divide each of the original numbers by N. In the remainder 

of this page, though, we just consider the sequence defined by (i) itself.  

1.3 What makes a good random number generator?  

That's a good question! Several answers are possible, for example:  

• The sequence generated by (i) isn't random at all, so there is no good 

random number    generator of that form.  

• A sequence (i) is good if it passes several well established statistical tests.  

• Or, it's good if it gives good results in particular applications (where of 

course the meaning of "good results" is heavily dependent upon the 

context).  

The applet on this page takes a different tag. It plots a certain number of points              

(Xi  , Xi+k ) for certain values of k = 1,2,3,... . Intuitively, for a random sequence, one 

should obtain a set of points distributed "evenly", "randomly" or "uniformly" over a 

square. It is not easy to make these concepts precise, but it is sometimes glaringly 

apparent when a set of points is not distributed in this way. Plotting 100 points with k=1 

for our example generator above generates the picture nearby. (It's is shown here at half 

its original size.)  
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                       Figure 1.1: Generating the random numbers [18] 

In the figure 1.1(a), the first coordinate measures horizontal distance from the left margin 

of the red box, and the second coordinate measures vertical distance downwards from the 

upper margin of the red box. Thus some of the points in this box have coordinates 

(79,48), (48,95), (95,56), etc. The values of the coordinates are scaled to fill the entire red 

box (which in this case measure 200 by 200 pixels). It's clear that there are only 20, 

points, and, since 100 were drawn, five lie on top of each other for each of the black dots. 

Moreover, the dots appear to lie along six slanted lines. As pointed out above, for a 

"good" random number generator there should be 100 points, and the distribution should 

be “random". 

The figure 1.1 nearby shows a distribution of 1,000 points obtained with a widely used 

and well tested and analyzed random number generator using  

                      a = 16807,   b = 0,   and N= 2 31

This generator is described in the reference by Park and Miller given below.  

 -1 = 2147483647.  

One reason for the seemingly peculiar choice of N is that that particular number is the 

largest integer than can be represented on a Unix machine or in Java. 
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To illustrate the abilities of this applet consider the following Figure1.2 which shows 

three sequences of 100,000 points each, using the same generator, for k=1 (red), k = 2 

(green), and k=3 (blue). Reassuringly, no systematic patterns are no systematic patterns 

are readily apparent. 

                                                              

 

              Figure 1.2: Generating 100000 random dots [18] 

1.4 Types of random number generators 

Random number generators can be classified into three groups, according to the source of 

their "randomness": 
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True random number generators (TRNGs):

         

 Truly random is defined as exhibiting 

“true” randomness, such as the time between “tics” from a Geiger counter exposed to a 

radioactive element. This type uses a physical source of randomness to provide truly 

unpredictable numbers. TRNGs are mainly used for cryptography, because they are too 

slow for simulation purposes. Many true random number generators are hardware 

solutions that you plug to a computer. The usual method is to amplify noise generated by 

a resistor (Johnson noise) or a semi-conductor diode and feed this to a comparator or 

Schmitt trigger.  Once you sample the output, you get a series of bits which can be used 

to generate random numbers. True random number generators can be used for research, 

modeling, encryption, lottery prediction and parapsychological testing, among many 

other uses.                                   

Figure 1.3: A PCI version generating true random numbers at 160  MByte/s [19] 

 

Quasi-random number generators (QRNGs): Quasi-random is defined as filling the 

solution space sequentially (in fact, these sequences are not at all random - they are just 

comprehensive at a preset level of granularity). These generators attempt to evenly fill an 

n-dimensional space with points, without clustering or grouping of points. Although 

QRNGs are used in Monte Carlo simulations, we do not consider them in this chapter. If 

we change our generator so as to maintain a nearly uniform density of coverage of the 

domain then we have a random number generator known as quasi-random number 

generator. Quasi-random numbers give up serial independence of subsequently generated 
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values in order to obtain as uniform as possible coverage of the domain. This avoids 

clusters and voids in the pattern of a finite set of selected points. 

 

                             Figure 1.4: Quasi-random numbers [19] 

Pseudorandom number generators (PRNGs):

An orthogonal classification of random number generators is organized according to the 

distribution of the numbers that are produced. Commonly encountered library functions, 

 Pseudorandom is defined as having the 

appearance of randomness, but nevertheless exhibiting a specific, repeatable pattern. The 

most common type of random number generator, PRNGs are designed to look as random 

as a TRNG, but can be implemented in deterministic software because the state and 

transition function can be predicted completely. In this chapter, we don’t consider only 

this type of generator. 
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such as C's rand()

                 

, sample from the uniform distribution, meaning that within some range 

of numbers, each value is equally likely to occur.  

                     Figure 1.5: Pseudorandom numbers [19] 

1.5 Applications of random numbers 

Numbers that are "chosen at random" are useful in many different kinds of applications. 

For example:  

Simulation: When a computer is being used to simulate natural phenomena, random 

numbers are required to make things realistic.  Simulation covers many  fields, from the 

study of  nuclear physics (where particles  are subject to random  collisions) to operations 

research  (where people  come  into,  say,  an airport  at  random intervals).   
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Sampling: It is often impractical to examine all possible cases, but a random sample will 

provide insight into what constitutes "typical" behavior.  

Numerical analysis:  Ingenious techniques for solving complicated numerical problems 

have been devised using random numbers.  

Computer programming: Random values make a good source of data for testing the 

effectiveness of computer algorithms. 

Decision making:  There are reports that many executives make their decisions by 

flipping a coin or by throwing darts, etc.  It is also rumored that some college professors 

prepare their grades on such a basis.  Sometimes it is important to make a completely 

"unbiased decision; this ability is occasionally useful  in computer algorithms, for 

example in  situations where a fixed decision made  each time would cause the algorithm 

to run more slowly. Randomness is also an essential part of optimal strategies in the 

theory of games.   

Recreation:  Rolling dice, shuffling decks of cards, spinning roulette wheels, etc., are 

fascinating pastimes for just about everybody.  These traditional uses of random numbers 

have suggested the name "Monte Carlo method," a general term used to describe any 

algorithm that employs random numbers. 
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                                                                   Chapter 2 

                                                                                         Literature Review 

 

2.1 Desirable Attributes of Random Numbers 

The following are the desirable attributes of random numbers. 

1. The random numbers should be uniformly distributed. 

2. They should be statically independent. 

3. Though the stream of random numbers will repeat depending on the parameters 

used in their generation, the stream length should be sufficiently larger than the 

desired length for a particular application. 

The generation of random numbers should be faster. 

Generating uniform random numbers: In this section we shall consider methods for 

generating a sequence of random fractions, i.e., random real numbers Un uniformly 

distributed between zero and one.  Since a computer can represent a real number with 

only finite accuracy, we shall actually be generating integersXn , between zero and some 

number m; the fraction   

                                              Un  = Xn /m  

will then lie between zero and one. Usually m is the word size of the computer, so Xn 

may be regarded (conservatively) as the integer contents of a computer word with the 

radix point assumed at the extreme right, and U, may be regarded (liberally) as the 

contents of the same word with the radix point assumed at the extreme left. 

2.2 Methods of random numbers 

2.2.1 Mid Square Method  

The mid square method was proposed by Von-Newmann and Metropolis in 1946.  In this 

method of random number generation, an initial seed is assumed and that number is 
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squared. The middle four digits of the squared value are taken as the first random number. 

Next, the random number which is generated most recently is again squared and the 

middle most four digits of this squared value are assumed as the next random number. 

This is to be repeated to generate the required number of random numbers. 

This method is demonstrated as shown in Table 2.1 by assuming the initial seed   as 8765                                                                                

                                       

Serial 

number 

n(Four 

digits) 
𝑛𝑛2 

1 8765 76825225 

2 8252 68095504 

3 0955 00912025 

4 9120 83174400 

5 1744 03041536 

6 0415 00172225 

7 1722 02965284 

8 9652 93161104 

9 1611 Etc 

                   Table2.1: Sample random numbers using mid square method  

Steps of mid-square method: 

The following are the steps of mid square method 

 Step 1: Input a four digit number, n and set the value of I to 1. 

 Step 2: Square the four digit number n. 
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 Step3:  Store the square of n into a string variable (X).  

 Step4: Add necessary number of zeros to the left of X so as to have a total of 

eight   characters in X. 

 Step5: Select the middle four characters in X and store these four characters in 

the variable n.   

             Treat the value of n as the I th random number. 

 Step6: I = I + 1 

             Step7: If I is less than or equal to the required number of random numbers, then             

                     go to step 2, else go to step 8. 

 Step8: Stop.   

The pseudo-code of this algorithm is given  

            Input n                              (* Four digit number) 

                        N                                 (* Number of random numbers required)        

            For I = 1 to n do  

                           { 

                                n_square = n^2 

                                n_string = n_square (* Convert n_square into n_string) 

                                count the number of characters(n1) in n_string 

                                if n1 < 8 then do  

                                                { 

                                                              add (8-n1) zeros to the left of n_string                    

                                                 } 



12 
 

                                X = middle four characters on n_string 

                                n = X                       (* convert string into integer) 

                                print I, n 

                       } 

      Stop 

Limitations of mid square method: 

• Relatively slow 

• Statistically unsatisfactory 

• Sample of random numbers may be too short  

• There is no relationship between the initial seed and the length of the sequence of 

random numbers 

2.2.2 The Linear Congruential Method 

By  far  the most  popular  random  number  generators in  use  today  are  special  cases 

of  the following scheme, introduced by D. H. Lehmer in  1949.  We choose four "magic 

numbers:  

                               m,   the modulus;  m > 0.  

                               a,    the multiplier; 0 ≤ a < m. 

                               c,    the increment; 0 ≤ c < m.   

                               X0,  the starting value; 0 ≤  X0 < m.   

The desired sequence of random numbers (Xn) is then obtained by setting  

                       Xn+1 = (a Xn  + c)mod m,       n ≥ 0                            ………….. (1) 

This is called a linear congruential sequence.   

For example, the sequence obtained when m = 10 and  X0 = a = c = 7 is  

                      7,6,9,0,7,6,9,0,………..                             …………….. (2) 
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As this example shows, the sequence is not always "random" for all choices of m, a, c, 

and X0. Example (2) illustrates the fact that the congruential sequences always "get into a 

loop"; i.e., there is ultimately a cycle of numbers that is repeated endlessly. This property 

is common to all sequences having the general form Xn+1 = f(Xn); the repeating cycle is 

called the period; sequence (2) has a period of length 4. A useful sequence will of course 

have a relatively long period. 

The special case c = 0 deserves explicit mention, since the number generation process is a 

little faster when c = 0 than it is when c # 0. Lehmer's [15] original  generation method 

had  c = 0,  although he mentioned  c # 0 as a possibility;  the idea of  taking  c # 0 to 

obtain longer periods is due to Thomson. 

When the increment c=0, it is called multiplicative congruential method. When the 

increment c≠0, it is called mixed congruential method. The choice of a, c, m and 

X
0

2.2.2.1 Properties of Congruential Generators 

drastically affects the   statistical properties and cycle length. 

All of the pseudorandom generators examined in this thesis are congruential generators 

where each term is defined recursively in terms of the k immediately preceding terms. We 

call this type of generator a recursive congruential generator, and it is expressed 

mathematically as  

                                𝑥𝑥𝑛𝑛  = f(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛−2 ,... , 𝑥𝑥𝑛𝑛−𝑘𝑘) mod m 

Note that f need not be linear, and need not use all k terms. We do assume that k is as 

small as possible, so x n depends on 𝑥𝑥𝑛𝑛−𝑘𝑘 . For example, in an LCG, f is defined by   

a𝑥𝑥𝑛𝑛−1 + c, and k = 1. However, f can be an arbitrary function, and 𝑥𝑥𝑛𝑛= a𝑥𝑥𝑛𝑛−1 + (𝑥𝑥𝑛𝑛−7)2 

is a perfectly good recursive congruential generator. This theorem provides an upper 

bound on the period, which is formalized in the subsequent corollary. 

Lemma2.2.2.1: Let x and n be integers. If x < n and x ∤ n, then there exists a positive 

integer k such that n − x < kx < n. 
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Theorem2.2.2.1: Suppose a recursive congruential generator produces the sequence (𝑥𝑥𝑛𝑛), 

so 𝑥𝑥𝑛𝑛  = f(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛−2 ,... , 𝑥𝑥𝑛𝑛−𝑘𝑘) mod m for constants k and m. If a k-tuple repeats, or   

(𝑥𝑥𝑎𝑎 , 𝑥𝑥𝑎𝑎+1,. .., 𝑥𝑥𝑎𝑎+𝑘𝑘) = (𝑥𝑥𝑎𝑎+𝑐𝑐 , 𝑥𝑥𝑎𝑎+𝑐𝑐+1,... , 𝑥𝑥𝑎𝑎+𝑐𝑐+1) for some a and c, then 𝑥𝑥𝑖𝑖  = 𝑥𝑥𝑖𝑖+𝑐𝑐  for all   

i ≥ a. Furthermore, the period λ divides c.  

Corollary2.2.2.1: Any recursive congruential generator defined in terms of the k 

preceding terms has maximal period 𝑚𝑚𝑘𝑘 . 

Note that this theorem only states that a recursive congruential generator cannot have a 

period longer than 𝑚𝑚𝑘𝑘 ; it does not imply that a generator can achieve period 𝑚𝑚𝑘𝑘 . The 

preceding theorems enable us to place an upper bound on equidistribution of a 

congruential sequence, as formalized in the following theorem.  

Theorem2: Any recursive congruential generator defined in ter ms of the k preceding 

terms can be equidistributed in no more than k dimensions. 

Generating Real Values: Congruential generators produce integers in the discrete set 

ℤ𝑚𝑚 . Many applications, however, assume random sequences of numbers drawn from a 

real interval. A computer has finite memory, so it cannot represent all real numbers with 

infinite precision, but it can approximate them up to the precision of its numerical 

representation by using a finite set of closely spaced rational numbers. Most generators 

are congruential and thus integer-valued, so a method is needed to transform their output 

to an approximation of real numbers in [0, 1). Typically, this transformation is done by 

dividing each term in the sequence by the modulus. The new sequence is then distributed 

over the set { 𝑛𝑛
𝑚𝑚

 : n ∈ ℤ𝑚𝑚  }, which approximates the real interval [0, 1) well when m is 

large. However, the distance between any two terms in the sequence can be no smaller 

than 1
𝑚𝑚

 . Whether a given value of m leads to a sufficiently accurate approximation of the 

real interval depends on the requirements of the application. Most congruential generators 

strive to generate numbers uniformly in ℤ𝑚𝑚 , so when they are transformed to real values 

they approximate the uniform probability distribution on the interval [0,1), which we 

denote U[0, 1).  
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2.2.2.2 LCG Full period: m is c ≠ 0, m − 1 otherwise (if c = 0, 0 is a fixed point for the 

recurrence). Considere the case c ≠0.  

Theorem (Period): The LCG has full period if and only if the following three conditions 

hold:  

1. The only positive integer that (exactly) divides both m and c is 1;  

2. If q is a prime number that divides m, then q divides a− 1;  

3. If 4 divide m, then 4 divide a-1.  

A popular LCG is the”standard minimal”, as known from the terminology introduced by 

Park and Miller in 1988: 

                                       𝑋𝑋𝑛𝑛+1 = 16807𝑋𝑋𝑛𝑛  mod 2147483647.  

Observe that 2147483647 = 231  − 1 ; on 3 2-bit architectures, the largest representable 

(signed) integer is 231 . 

The Standard Minimal Generator 

#define a 16807  

#define m 2147483647  

#define AM_MIL (1.0/m)  

#define IQ_MIL 127773  

#define IR_MIL 2836  

double ran_standardminimal_get_val(long * state)  

{ 

 long k;  

double ans; k=( * state)/IQ_MIL;  

idum=a * ( * state-k * IQ_MIL)-IR_MIL * k;  
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if ( * state < 0) * state += m;  

ans=AM_MIL * ( * state); return ans;  

} 

 

           Figure 2.1: 4096 generated points on the unit square 

2.2.2.3 Multiplicative congruential Method 

The multiplicative congruential method is an arithmetic procedure to generate a finite 

sequence of uniformly distributed random numbers. Two integers P and Q are congruent 

if their difference is an integral multiple of m. This is represent as shown below 

                                              P ≡ Q (mod m) 

This means that” P is congruent to Q modulo m” and further the following are true 

1. (P-Q) is divisible by m. 
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2.  P and Q, when divided by m, leave identical remainders.  

Some examples of congruent relationships are shown below. 

                               53738 ≡ 38(mod 100) 

                                                 97 ≡ 67(mod 11)  

Let  iX  be the ith uniformly distributed random number. 

Then (i+1)th random number is given by the following relation. 

                                         1iX +  = a iX (mod m)    

                                          where a and m are nonnegative integers. 

That is, 1iX +  = Remainder of [(a iX )/m] 

The range of the random number that will be generated using this relation is from 0 to 1. 

The value of m is given by the following formula 

                                             m = 2r  

Where r is the number of bits in the computer word. 

The value of a is given by the following formula 

                                             a = 8t ± 3 

                                             where t is any positive integer. 

The initial value of iX (That is 0X ) is any positive old integer. 

The steps of the multiplicative congruential method for generation of uniformly 

distributed random numbers are presented as follows: 

Step 1: Input the following: 

1. Choose any number less than nine digits and assign it to 0X . 

2. Assign at least five digits value for a. 

3.  Value for m. 

Step 2:  Set i = 1 

                           X = 0X  

Step 3: Find the product of a and X 

                           Y = a x X 

Step 4:  Divide Y by m and do the following. 
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               Step 4.1:  Store the remainder as the ith random number. 

                                 iR   = Remainder of [Y/m] = Y – Int[Y/m] x m   

                Step 4.2: Store the quotient as X. 

                                   X = Int[y/m] 

Step 5: Store or print or use the ith random number ( iR ). 

Step 6:  i = i +1 

Step 7:  If I is less than or equal to the required number of random numbers, then go to 

                step3, else go to step 8.                

Step 8: Stop. 

The pseudo-code of this algorithm is shown 

                       Input    X0                 (* 9 digits number) 

                                    a                    (* at least 5 digits number ) 

                                    m                           

                                    N                   (* number of required random numbers)        

                       Initialize X = X0 

                       for i = 1 to N do 

                                          { 

                                                 Y = a*X 

                                                 Z = Y/m 

                                                 R(i) = Y –(int (Z)*m)    

                                                 X = int (Z)       (* integer of Z)  

                                                 Print R(i) 

                                          } 

                     stop. 

2.2.2.4 Merits and Demerits of LCG 

• LCGs are fast and require minimal memory (typically 32 or 64 bits) to retain 

state. This makes them valuable for simulating multiple independent streams. 

• Linear congruential random number generators are widely used in simulation and 

Monte Carlo calculations. Because they are very fast, and because they have 
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minimal state space, they remain attractive for use in parallel computing 

environments. 

• LCGs should not be used for applications where high-quality randomness is 

critical. For example, it is not suitable for a Monte Carlo simulation because of 

the serial correlation (among other things). They should also not be used for 

cryptographic applications. 

• LCGs tend to exhibit some severe defects. For instance, if an LCG is used to 

choose points in an n-dimensional space, the points will lie on, at most, m1/n hyper 

planes (Marsaglia's Theorem, developed by George Marsaglia). This is due to 

serial correlation between successive values of the sequence Xn. The spectral test, 

which is a simple test of an LCG's quality, is based on this fact. 

• A further problem of LCGs is that the lower-order bits of the generated sequence 

have a far shorter period than the sequence as a whole if m is set to a power of 2. 

In general, the nth least significant digit in the base b representation of the output 

sequence, where bk = m for some integer k, repeats with at most period bn

• Nevertheless, LCGs may be a good option. For instance, in an embedded system, 

the amount of memory available is often very severely limited. Similarly, in an 

environment such as a 

. 

video game console taking a small number of high-order 

bits of an LCG may well suffice. The low-order bits of LCGs when m is a power 

of 2 should never be relied on for any degree of randomness whatsoever. Indeed, 

simply substituting 2n

2.2.3 Quadratic Congruential Method 

 for the modulus term reveals that the low order bits go 

through very short cycles. In particular, any full-cycle LCG when m is a power of 

2 will produce alternately odd and even results. 

It is proposed by R.R.Coveyou. It is used to get more random numbers. 

                        Xn+1 = (dXn
2 +  aXn + c)mod m                  …………………… (3) 

The conditions on d, a and c required for the maximum period (which matches the    

modulus) are: 

1. c must be relatively prime to the modulus. 

http://en.wikipedia.org/wiki/Hyperplanes�
http://en.wikipedia.org/wiki/Hyperplanes�
http://en.wikipedia.org/wiki/Hyperplanes�
http://en.wikipedia.org/w/index.php?title=Marsaglia%27s_Theorem&action=edit&redlink=1�
http://en.wikipedia.org/wiki/George_Marsaglia�
http://en.wikipedia.org/w/index.php?title=Spectral_test&action=edit&redlink=1�
http://en.wikipedia.org/wiki/Video_game_console�
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2. a is equal to 1 modulo every odd prime factor of the modulus. 

3. d is equal to 0 modulo every odd prime factor of the modulus. 

4. If the modulus is divisible by 4, then a is equal to 1 modulo 2, and d is equal to 

            a-1 modulo 4 

5. If the modulus is divisible by 2, either d is even and a is odd, which is the only 

possibility if the modulus is divisible also by 4, or d is odd and a is even 

6. If the modulus is divisible by 9, either a is equal to 0 modulo 9, or  a is equal to 1 

modulo 9, and d times c is equal to 6 modulo 9. 

An interesting quadratic method has been proposed by R.R. Coveyou when m is a power 

of two.   

                        X0mod 4 = 2       Xn+1 = Xn(Xn +  1)mod 2e          ……………….(4)     

This sequence can be computed with about the same efficiency as (1), without any 

worries of overflow.            

2.2.4 Fibonacci Generator 

The simplest sequence in which Xn+1 depends on more than one of the preceding values 

is the Fibonacci sequence,  

                         Xn+1 = (Xn  + Xn−1) mod m.              ……………………………. (5) 

This generator was considered in the early 1950s, and it usually gives a period length 

greater than m; but tests have shown that the numbers produced by the Fibonacci 

recurrence (5) are definitely not satisfactorily random.  

Problems with Fibonacci Generator (FG): 

• The initialization of FGs is a very complex problem. The output of FGs is very 

sensitive to initial conditions, and statistical defects may appear initially but also 

periodically in the output sequence unless extreme care is taken.  

• Another potential problem with FGs is that the mathematical theory behind them 

is incomplete, making it necessary to rely on statistical tests rather than 

theoretical performance  
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2.2.5 Combined Multiple Recursive Generator (CMRG) 

An approach is to combine two or more multiplicative congruential generators to have 

good statistical properties and longer periods. 

                                Xn  = (Xn  + Xn−k)mod m       …………………………... (6) 

When k is a comparatively large value. 

When k ≤ 15, the sequence fails to gap test. The gap test means counts the number of 

digits that appear between repetitions of a particular digit and then uses the Kolmogorov-

Smirnov test to compare with the expected number of gaps. 

Consider two (or more) MRG’s working in parallel:  

X1,n  = (a1,1X1,n−1 + ··· + a1,kX1,n−k) mod m1 ,  

X2,n  = (a2,1X2,n−1 + ··· + a2,kX2,n−k) mod m2 . 

We de fine the two combinations  

Zn  : = (X1,n  − X2,n  ) mod m1 ; Un  := Zn  /m1;  

Wn  := (X1,n  /m1 − X2,n  /m2 ) mod 1.  

The sequence {Wn  , n ≥ 0} is the output of an other MRG, of module m = m1m2 , and              

{Un  , n ≥ 0 } is  nearly the same sequence if m1 and m2 are close. We can achieve the 

period    (𝑚𝑚1
𝑘𝑘  − 1)(𝑚𝑚2

𝑘𝑘  − 1)/2. 

MRG32k3a: The following combined MRG was proposed by L’Ecuyer, and is amongst 

the most popular and efficient known generators. It combines 2 MRG’s.  

k = 3,  

m1 = 232  − 209, a11  = 0, a12  = 1403580, a13  = −810728,  

m2 = 232  − 22853, a22  = 527612, a22= 0, a23  = −1370589. 

Combination: Zn  = (X1,n  −X2,n  ) mod m1 .  

Corresponding MRG: k = 3, m = m1m2 = 18446645023178547541,  
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a1 = 18169668471252892557,  

a2 = 3186860506199273833,  

a3 = 8738613264398222622.  

Period ρ = (𝑚𝑚1
3 − 1)(𝑚𝑚2

3 − 1)/2 ≈ 2191  

MRG32k3a Implementation:  

#define norm 2.328306549295728e-10 / * 1/(m1+1) * /  

#define m1 4294967087.0  

#define m2 4294944443.0 

 #define a12 1403580.0  

#define a13n 810728.0  

#define a21 527612.0  

#define a23n 1370589.0  

double s10, s11, s12, s20, s21, s22;  

double MRG32k3a ()  

{  

long k;  

double p1, p2;  

/* Component 1 */  

p1 = a12 * s11 - a13n * s10; 

k = p1 / m1;  

p1 -= k * m1; 
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if (p1 < 0.0) p1 += m1;  

s10 = s11;  

s11 = s12;  

s12 = p1; /* Component 2 */ 

p2 = a21 * s22 - a23n * s20; 

k = p2 / m2; p2 - = k * m2;  

if (p2 < 0.0) p2 += m2;  

s20 = s21; s21 = s22;  

s22 = p2;  

/* Combination */ 

if (p1 <= p2)  

return ((p1 - p2 + m1) * norm);  

else return ((p1 - p2) * norm);  

}  

The generator ”L’Ecuyer” presentin AMLET is a combination of two LCG’s. It is a bit 

less efficient than MRG32K3a (which will replace it in a future version), but still very 

good. 

Merits of CMRG: 

Combining parallel multiple recursive sequences provides an efficient way of 

implementing random number generators with long periods and good structural 

properties. Such generators are statistically more robust than simple linear congruential 

generators that fit into a computer word 
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2.2.6 Additive number generator (ANG) 

It was devised by G.J.Mitchell and D.P. Moore. 

                   Xn  = (Xn−24  + Xn−55)mod m,              n ≥ 55      ………………… (7) 

where m is even and  X0, ……….., X54  are arbitrary integers not all even. The constants 

24 and 55 in this definition were not chosen at random; they are special values that 

happen to have the property that the least significant bits (Xn   mod 2) will have a period 

of length 255  - 1. Therefore the sequence (Xn) must have a period at least this long. 

Algorithm (Additive number generator): 

Memory cells Y [I], Y [2],....., Y [55] are initially set to the valuesX54  , X53 ,  . . . , X0,  

respectively; j is initially equal  to 24 and k is  55.  Successive performances of this 

algorithm will produce the numbers X55 , X56  . . . as output.  

 Al. [Add.]  (If we are about to output Xn  at this point, Y[j] now equals Xn−24  and Y[k] 

equals Xn−55 .) Set Y[k]  (Y[k] + Y[j]) mod 2e , and output Y[k].  

 A2. [Advance.]  Decrease j and k by 1.  If now j = 0, set j   55; otherwise if k = 0,  

        set k   55. 

This generator is usually faster than the previous methods we have been discussing, since 

it does not require any multiplication.  Besides its speed, it has the longest period we have 

seen yet; and it has consistently produced reliable results, in extensive tests since its 

invention in 1958.  Furthermore, as Richard Brent has observed, it can be made to work 

correctly with floating point numbers, avoiding the need to convert between integers and 

fractions. Therefore it may well prove to be the very best source of random numbers for 

practical purposes.  The only reason  it is  difficult to recommend  sequence (7)  

wholeheartedly is that there is  still very little theory to prove that it does or  does not 

have desirable randomness properties; essentially  all we know for sure is that the period  

is very  long,  and this is not enough.  John Reiser (Ph. D. thesis, Stanford Univ., 1977) 

has shown, however, that an additive sequence like (7) will be well distributed in high 

dimensions, provided that a certain plausible conjecture is true.   
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The fact that the special numbers (24, 55) in (7) work so well follows from theoretical 

results developed in some of the exercises below.  Table 1 lists all pairs (I, k) for which 

the sequence   Xn  = (Xn−l  + Xn−k) mod 2 has period length  2k  -  1, when k < 100.  The 

pairs (1, k) for small as well as larger k are shown, for  the sake of  completeness; the pair 

(1, 2)  corresponds to the Fibonacci sequence  mod 2,  whose period has length 3.  

However, only pairs (1, k) for relatively large k should be used to generate random 

numbers in practice. 

                 

 

             Table 2.2: Subscript pairs yielding long period mod 2[14] 

Merits: 

It is faster than previous methods since it does not require any multiplication. It can be 

made to work correctly with floating point numbers, avoiding the need to convert 

between integers and fraction. 

2.2.7 Combination of random number generator 

Suppose we have two sequences X0, X1, …..  and Y0, Y1, …….. of random numbers 

between 0 and m-1, preferably generated by two unrelated methods. 
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                           Zn  = (Xn  + Yn)mod m                           ……………………(8) 

In this case, the period will be quite long if the period lengths of (Xn) and (Yn) are 

relatively prime to each other.  

Algorithm M (Randomizing by shuffling):   

Given methods for generating two sequences (Xn) and (Yn), this algorithm will 

successively output the terms of a "considerably more random" sequence.  We use an 

auxiliary table V[0], V[l],  . . . , V[k-1], where k is some number  chosen for convenience, 

usually in the  neighborhood of  100. Initially, the V-table is filled with the first k values 

of the X-sequence.  MI.  [Generate X,Y.] Set X and Y equal to the next members of the 

sequences (Xn) and (Yn), respectively.  

M2.  [Extract j.] Set j  [kY/m], where m is the modulus used in the sequence (Yn); that 

is, j is a random value, 0 ≤ j < k, determined by Y.   

M3.  [Exchange.]  Output V[j] and then set V[j]   X. 

As an example, assume that Algorithm M is applied to the following two sequences, with            

k = 64:   

X0 = 5772156649,  Xn+1 = (3141592653Xn  + 2718281829) mod 235 ;   

Y0  = 1781072418,  Yn+1  = (2718281829Yn  + 3141592653) mod 235 . 

On intuitive grounds it appears safe to predict that the sequence obtained by applying 

Algorithm M will satisfy virtually anyone's requirements for randomness in a computer-

generated sequence, because the relationship between nearby terms of the output has 

been almost entirely obliterated. Furthermore, the time required to generate this sequence 

is only slightly more than twice as long as it takes to generate the sequence (Xn) alone. 

However, there is an even better way to shuffle the elements of a sequence, discovered by 

Carter Bays and S. D. Durham [ACM Trans. Math. Software 2 (1976), 59-64]. Their 

approach, although it appears to be superficially similar to  Algorithm  M, can give 

surprisingly better performance  even though it requires  only one input sequence (Xn) 

instead of  two: 
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Algorithm B (Randomizing by shuffling): 

Given a method for generating a sequence (Xn),  this algorithm will successively output 

the terms of  a "considerably  more random"  sequence, using an auxiliary table V[0], 

V[l], . . . …, V[k – 1]  as  in  Algorithm  M.  Initially the V-table is filled with the first k 

values of the X-sequence, and an auxiliary variable Y is set equal to the (k + 1)st value.  

B1.    [Extract j.] Set j  [kY/rn], where m is the modulus used in the sequence (Xn); that 

is, j is a random value, 0 ≤ j < k, determined by Y.   

B2.  [Exchange.] Set Y V[j], output Y, and then set V[j] to the next member of the         

sequence (Xn). 
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                                                                                                                   Chapter 3 

                                                                                       Problem Statement 

 

Random number generation is the fundamental problem applicable in many real life 

applications. The demand for random numbers in scientific applications is increasing. 

However, the most widely used multiplicative, congruential random-number generators   

with modulus 231  - 1 have a cycle length of about 2.1 x 109. Moreover, developing 

portable and efficient generators with a larger modulus such as 261 - 1 is more difficult 

than those with modulus 231  - 1. Linear congruential random-number generators with 

Mersenne prime modulus and multipliers of the form a = ± 2𝑞𝑞  ±2𝑟𝑟  have been developed. 

Their main advantage is the availability of a simple and fast implementation algorithm 

for such multipliers. Disadvantage is generalizes the algorithm points out statistical 

weaknesses of these multipliers when used in a straightforward manner as seen in 

previous chapters.  

After studying and comparing the existing algorithms some implements will be suggested 

for combined multiple recursive random number generation as follows:  

A class of combined multiple recursive random number generators constructed in a way 

that each component runs fast and is easy to implement, while the combination enjoys 

excellent structural properties as measured by the spectral test. Each component is a 

linear recurrence of order k> 1, modulo a large prime number, and the coefficients are 

either 0 or are of the form a = ± 2𝑞𝑞  or a =± 2𝑞𝑞  ± 2𝑟𝑟 . This allows a simple and very fast 

implementation, because each modular multiplication by a power of 2 can be 

implemented via a shift, plus a few additional operations for the modular reduction. 

Select the parameters in terms of the performance of the combined generator in the 

spectral test to provide a specific implementation. 

 

                                                                                                                       

 



29 
 

Chapter 4  

                                                  Design and Implementation 

 

4.1 Multiple Recursive Generators 

The multiple recursive generator (MRG) generalizes the multiplicative linear 

congruential generator from a multiple of the previous term to a linear combination of the 

previous k terms. A multiple recursive generator (MRG) is defined by the linear 

recurrence  

                                    𝑥𝑥𝑛𝑛= (𝑎𝑎1 𝑥𝑥𝑛𝑛−1 +···+𝑎𝑎𝑘𝑘𝑥𝑥𝑛𝑛−𝑘𝑘) mod m; ……………………… (9) 

                                    𝑢𝑢𝑛𝑛  = 𝑥𝑥𝑛𝑛  /m. ………………………………………………… (10) 

The modulus m and the order k are positive integers, the coefficients 𝑎𝑎𝑖𝑖  belong to                     

ℤ𝑚𝑚  ={ 0, 1,...,m− 1}, and the state at step n is the vector 𝑥𝑥𝑛𝑛  = (𝑥𝑥𝑛𝑛−𝑘𝑘+1 ,..., 𝑥𝑥𝑛𝑛  ). The 

maximal period length of the recurrence (1) is ρ = 𝑚𝑚𝑘𝑘   − 1 and this length is attained if 

and only if m is prime and the characteristic polynomial of the recurrence,  

                                     P(z)= 𝑧𝑧𝑘𝑘  −𝑎𝑎1  𝑧𝑧𝑘𝑘−1   −···−𝑎𝑎𝑘𝑘 ,  

is a primitive polynomial modulo m. Primitive polynomials [32][33] can be found by 

random search. To obtain a primitive polynomial, one needs at least 2 non- zero 

coefficients 𝑎𝑎𝑖𝑖’s. This minimal number of non-zero coefficients yields the following 

economical version of (9):  

                                    𝑥𝑥𝑛𝑛  = (𝑎𝑎𝑟𝑟  𝑥𝑥𝑛𝑛−𝑟𝑟  + 𝑎𝑎𝑘𝑘  𝑥𝑥𝑛𝑛−𝑘𝑘  ) mod m………………………… (11)  

The classical linear congruential generator (LCG) is obtained with k = 1. Further details 

about MRGs can be found, e.g., in Knuth (1998), Niederreiter (1992), L’Ecuyer (1994), 

L’Ecuyer (1996), and the references therein. Besides period length, two important issues 

in the design of MRGs are the statistical quality and the efficiency of the implementation. 

The statistical quality is traditionally assessed by measuring the uniformity of the set of 

all vectors of successive output values (𝑢𝑢𝑛𝑛 ,..., 𝑢𝑢𝑛𝑛+𝑡𝑡−1), from all initial states, as we 

explain in Section 4.4. For the implementation, the key issue is how to compute 

efficiently the products 𝑎𝑎𝑖𝑖x mod m when m is large.  
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The mathematical properties of the multiple recursive generator resemble those of the 

inversive congruential and feedback shift register generators, which we discuss after it. 

An in-depth exploration of these properties is beyond the scope of this thesis. The 

computation of a sequence using this generator takes about k times as long as with a 

simple LCG, and requires about k times as much storage space, since at any point the 

previous k terms must be stored. Thus we see that although a larger k value increases the 

period by a factor of m, it also increases computation time and storage space linearly. 

One way to increase computational efficiency is to set all multipliers to ±1 or 0, as 

suggested by Watson in 1962 [28]. A particularly good generator of this form is   𝑥𝑥𝑛𝑛  = 

𝑥𝑥𝑛𝑛−24  + 𝑥𝑥𝑛𝑛−55  mod m, with the restriction that the initial values must not all be even 

(Knuth 1997 [14]). The least significant bit in the generated sequence has period 255  − 1, 

so the generator will have at least this period for any value of m. Furthermore, it has a 

period of  2𝑘𝑘−1 (255  − 1 ) if m = 2𝑘𝑘 . Since this generator doesn’t require any 

multiplication, it is faster even than the simple LCG, and has a much longer period. Deng 

and Lin in 2000 [2] proposed a slightly different way to achieve efficiency with the MRG. 

They recommend a so-called Fast MRG of the form 𝑥𝑥𝑛𝑛  = b𝑥𝑥𝑛𝑛−𝑘𝑘  − 𝑥𝑥𝑛𝑛−1 mod m for some 

k, where the multiplier b is chosen such that the generator has full period. This generator 

eliminates the tradeoff of high computation time, but maintains the long period afforded 

by keeping track of k previous values. 

4.1.1 Feedback Shift Register Generators  

The feedback shift register generator (FSRG), which is a special form of the multiple 

recursive generator with modulus 2, was introduced by Tausworthe in 1965 [27]. It has 

the form  

                                   𝑥𝑥𝑛𝑛= (𝑎𝑎1 𝑥𝑥𝑛𝑛−1 +···+𝑎𝑎𝑘𝑘𝑥𝑥𝑛𝑛−𝑘𝑘) mod 2.  

It generates individual bits, 0 or 1, based on the preceding k bits. The multipliers 𝑎𝑎𝑖𝑖  are 

either 0 or 1, since any other value is equivalent to one of these mod 2. To begin 

generation, k seed bits are required. As shown in Theorem 2.2.2.1 and Corollary 2.2.2.1, 

the upper bound on the period of an FSRG is 2𝑘𝑘  because the entire sequence repeats as 

soon as a k-tuple repeats. However, in an FSRG, the k-tuple consisting of all zeros results 

in the remainder of the sequence being all zeroes, so a usable FSRG must not produce 

this k-tuple. Therefore the maximal period for an FSRG is actually 2𝑘𝑘−1 (Gentle 2003 
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[11]). Addition mod 2 is equivalent to the exclusive-or operation, which is very efficient 

on a computer. To increase efficiency further, it is common to set all coefficients to zero 

except for two, as with MRGs. The generator then takes the form 𝑥𝑥𝑛𝑛  = 𝑥𝑥𝑛𝑛−𝑝𝑝  + 𝑥𝑥𝑛𝑛−𝑘𝑘  mod 

2, and is called a two-tap generator. In general, a generator with N non-zero coefficients 

is called an N-tap generator. The generator is named for the fact that it can be 

implemented efficiently using a single register and the shift operation, as illustrated in the 

following diagram. In each time step, the bits shift down the register according to the 

arrows, and a new bit is calculated and pushed onto the end. 

             
             Figure 4.1: Feedback Shift Register Generators  

 

This diagram illustrates the generator 𝑥𝑥𝑛𝑛  = 𝑥𝑥𝑛𝑛−1 + 𝑥𝑥𝑛𝑛−4 mod 2 with seed values (1,0,1,0), 

which produces the sequence listed below. This generator achieves its maximal period,  

24 − 1 = 15, and starts repeating with 𝑥𝑥4 = 𝑥𝑥19, 𝑥𝑥5 = 𝑥𝑥20, etc. 

 

N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

𝑥𝑥𝑛𝑛  1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0 

 

                      Table 4.1: Generate the binary numbers using FSRG 

 

The conditions for coefficients that produce a maximal period involve finding primitive 

polynomials in ℤ2; see Lidl and Niederreiter [17] and Golomb [12] for an extensive 

discussion of FSRGs and their properties. For our purposes, it suffices to say that the 

conditions are restrictive, but not difficult to meet. Where other random number 

generators generate sequences of integers in ℤ𝑚𝑚   for some large m, the feedback shift 
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register generator has m = 2, and produces a sequence of bits. In the following sections, 

we discuss several methods of using this bit sequence to generate larger integers like the 

other generators we have discussed. 

Implementation:  

A first approach for computing ax mod m is approximate factoring [34][43]. It uses 

integer arithmetic and a clever decomposition of m. It works if 𝑎𝑎2 < m or if a = m/i where  

𝑎𝑎2 < m, and if all integers between −m and m are well represented on the computer.  

A second approach computes the product and the division by m (for the mod operation) 

directly in floating-point arithmetic. On computers that obey the IEEE 64-bit floating 

point standard (most computers do), all integers up to  253  are represented exactly in 

floating point, and the floating-point implementation works if am < 253 . See L’Ecuyer 

(1999a) for details and examples. 

A third approach, introduced by Wu (1997) and generalized by L’Ecuyer and Simard 

(1999), which we call the powers-of-2 decomposition, assumes that a is a sum or a 

difference of a small number of powers of 2, e.g. a =± 2𝑞𝑞   ± 2𝑟𝑟 . The product of x by each 

power of 2 can be implemented by a left shift of the binary representation of x, and the 

product ax is computed by adding and/or subtracting. The details are given in Section 3. 

This approach turns out to be more efficient than the other two, according to our 

experiments. Note that replacing any 𝑎𝑎𝑖𝑖  by 𝑎𝑎𝑖𝑖  ± m changes nothing to the recurrence (9). 

If for some 𝑎𝑎𝑖𝑖  ∈ ℤ𝑚𝑚  , |𝑎𝑎𝑖𝑖  − m| satisfies one of the above conditions whereas 𝑎𝑎𝑖𝑖  does not 

satisfy that condition, then one can replace 𝑎𝑎𝑖𝑖  by ã𝑖𝑖  = 𝑎𝑎𝑖𝑖  − m when implementing (9). 

This is equivalent to allowing negatives values for the𝑎𝑎𝑖𝑖’s, which we shall do in the 

remainder of this paper. 

 
4.2 Combined MRGs 
 
A direct efficient implementation of the recurrence (9) can generally be obtained only 

when the number of non-zero coefficients 𝑎𝑎𝑖𝑖  is small, and when special conditions are 

imposed on these coefficients, as explained in the previous subsection. However, 

imposing these constraints usually implies that the resulting MRG has a poor lattice 

structure [5]. In particular, good behavior is possible only if the sum of squares of the 𝑎𝑎𝑖𝑖  

is large [5]. This has motivated the introduction of combined MRGs, which are 
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constructed so that the components are easy to implement efficiently while the structure 

of the resulting combined generator has good quality. L’Ecuyer has proposed and 

analyzed the following class of combined MRGs, based on J linear recurrences, with the 

same order k and distinct prime moduli m j, running in parallel. For 1 ≤ j ≤ J , let  

                                     𝑥𝑥𝑗𝑗 ,𝑛𝑛  = (𝑎𝑎𝑗𝑗 ,1 𝑥𝑥𝑗𝑗 ,𝑛𝑛−1 +···+𝑎𝑎𝑗𝑗 ,𝑘𝑘  𝑥𝑥𝑗𝑗 ,𝑛𝑛−𝑘𝑘  ) mod 𝑚𝑚𝑗𝑗  ……………. (11) 

and suppose that the recurrence (1.3) has period 𝜌𝜌𝑗𝑗  = 𝑚𝑚𝑗𝑗
𝑘𝑘  − 1. Suppose also that the least 

common multiple of 𝜌𝜌1 ,..., 𝜌𝜌𝐽𝐽  is ρ = 𝜌𝜌1 ···𝜌𝜌𝐽𝐽 /2𝐽𝐽−1 . (This is the best that one can do, 

because each ρ j is necessarily even.)  

Define the two combinations  

                                    𝑧𝑧𝑛𝑛  = ( ∑ 𝛿𝛿𝑗𝑗𝑥𝑥𝑗𝑗 ,𝑛𝑛
𝐽𝐽
𝑗𝑗=1 ) mod 𝑚𝑚1 ;     𝑢𝑢𝑛𝑛  = 𝑧𝑧𝑛𝑛 /𝑚𝑚1 ……………. (11) 

 and  

                                    𝑤𝑤𝑛𝑛  =  �∑ 𝛿𝛿𝑗𝑗 𝑥𝑥𝑗𝑗 ,𝑛𝑛

𝑚𝑚𝑗𝑗

𝐽𝐽
𝑗𝑗=1 � mod 1 ……………………… (11)  

where the 𝛿𝛿𝑗𝑗  ’s are integers such that 𝛿𝛿𝑗𝑗  is relatively prime with 𝑥𝑥𝑗𝑗  for each j . L’Ecuyer 

(1996) has shown that the sequence {𝑤𝑤𝑛𝑛  ,n ≥ 0} defined by (4.2 ) is the same as the 

sequence {𝑢𝑢𝑛𝑛  ,n≥ 0} produced by the MRG (1–2), with m = 𝑚𝑚1 ···𝑚𝑚𝐽𝐽  , and explains how 

to compute the corresponding 𝑎𝑎𝑖𝑖’s. Moreover, the numbers 𝑢𝑢𝑛𝑛  and 𝑤𝑤𝑛𝑛  produced by (4.2) 

and (4.2), respectively, differ only by a very small quantity when the 𝑚𝑚𝑗𝑗  are close to each 

other. Explicit bounds on the difference are given in L’Ecuyer (1996). The generators 

considered in this paper are combined MRGs of this form, constructed so that the 

structure of the combined MRG has excellent quality while (4.2) can be implemented 

efficiently for each j. This was already achieved by L’Ecuyer [1] for implementations 

based on approximate factoring and on floating point arithmetic, respectively. The aim of 

this paper is to propose combined MRGs that are faster for an equivalent statistical 

quality, by using the powers-of-2 decomposition method.  

 
4.3 Overview of the Remainder  
 
The remainder of the paper is organized as follows. In Section 4.4, we recall the quality 

criteria for selecting MRGs based on an analysis of their lattice structure by the spectral 

test. In Section 4.4.1, we describe the implementation method for coefficients that are a 

sum or a difference of a small number of powers of 2. In Section 4.5, we explain how we 
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searched for good single and combined MRGs with coefficients of this form, and why we 

prefer the combined MRGs over the non-combined ones. In Section 4.5.1, we give a 

specific implementation of a combined MRG of this form and we compare its speed with 

other combined MRGs proposed in L’Ecuyer, and implemented via approximate factoring 

and floating point arithmetic. 

 

4.4 Lattice Structure and Quality Criteria  

 
Let  

                     Ψ𝑡𝑡  ={(𝑢𝑢0 ,..., 𝑢𝑢𝑡𝑡−1 ) : (𝑥𝑥0 ,..., 𝑥𝑥𝑘𝑘−1 ) ∈ ℤ𝑚𝑚𝑘𝑘  }, ……………….(11)  

the set of all vectors of t successive output values of the MRG, from all possible initial 

states. If the initial seed of the MRG is chosen at random, this Ψ𝑡𝑡  is viewed in a sense as 

the sample space from which points are chosen at random to approximate the uniform 

distribution over the t-dimensional unit hypercube [0, 1)𝑡𝑡 . This means that the generator 

should be constructed so that Ψ𝑡𝑡  covers [0, 1)𝑡𝑡   very evenly, for t up to some arbitrary 

number. It is well known that the set ً  t for an MRG is equal to the intersection of a lattice 

L𝑡𝑡   with the unit hypercube [0, 1)𝑡𝑡  [5].  This implies that Ψ𝑡𝑡  lies on a limited number of 

equidistant parallel hyperplanes, at a distance d𝑡𝑡  apart, where 1/d𝑡𝑡   turns out to be equal 

to the Euclidean length of the shortest nonzero vector in the dual lattice of L𝑡𝑡 , defined as 

the set of vectors in ℝ𝑡𝑡  whose scalar product by any vector of L𝑡𝑡   is an integer. 

Computing d𝑡𝑡   is called the spectral test [14]. For Ψ𝑡𝑡  to be evenly distributed over [0, 1)𝑡𝑡 , 

we want d𝑡𝑡   to be small. Here, we use the same figure of merit as in L’Ecuyer (1999a), 

namely  

                                         Mt1   = min𝑡𝑡≤t1 𝑑𝑑𝑡𝑡∗(𝑚𝑚𝑘𝑘  )/ d𝑡𝑡 , 

 where t1 > k is a selected constant (the maximal dimension that is considered) and                     

𝑑𝑑𝑡𝑡∗ (𝑚𝑚𝑘𝑘) = 1/( ρ𝑡𝑡𝑚𝑚𝑘𝑘/𝑡𝑡) is an absolute lower bound on d t, for given k and t . For t ≤ 8, we 

take ρ𝑡𝑡  as the value of γ𝑡𝑡  defined in Knuth, page 109, whereas for t > 8, we take             

ρ𝑡𝑡  = exp[R(t)/t] where R(t) is the bound of Rogers on the density of sphere packing 

[35][21]. This Mt1  is always between 0 and 1 and we want it to be as large as possible. 

We recall that a general upper bound on 1/𝑑𝑑𝑡𝑡2 is given by  

                                        1/𝑑𝑑𝑡𝑡2 ≤ 1 + ∑ 𝑑𝑑𝑡𝑡2𝑘𝑘
𝑖𝑖=1  ,  
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which means that a necessary condition for good quality is that the sum of squares of the 

coefficients must be large.  

 
4.4.1 Implementation by the powers of 2- decomposition method  
 
We want to compute  

                                       y = 2𝑞𝑞   x mod m ……………………………….. (11)  

where 0 < x < m. We decompose m and x as m = 2𝑒𝑒   − h and x =  𝑥𝑥0 + 2𝑒𝑒−𝑞𝑞𝑥𝑥1  ,   where 

h> 0, 𝑥𝑥0  = x mod 2𝑒𝑒−𝑞𝑞 , and 𝑥𝑥1  == x/ 2𝑒𝑒−𝑞𝑞 . We then have  

                                       y = 2𝑞𝑞  (𝑥𝑥0  + 2𝑒𝑒−𝑞𝑞  𝑥𝑥1  ) mod (2𝑒𝑒  − h)  

                                          = ( 2𝑞𝑞𝑥𝑥0  + h𝑥𝑥1  ) mod (2𝑒𝑒  − h)  

We assume that the following inequalities hold:  

                                       h < 2𝑞𝑞  and h(2𝑞𝑞  − (h + 1) 2−𝑒𝑒+𝑞𝑞  ) < m.  

Under these conditions, each of the two terms 2𝑞𝑞𝑥𝑥0 and h𝑥𝑥1 in (11) is less that m, and y 

can be computed as follows [10]: Shift the binary representation of 𝑥𝑥0 by q positions to 

the left to obtain 2𝑞𝑞  𝑥𝑥0 , add h times 𝑥𝑥0, and subtract m if the result exceeds m− 1. This 

can be implemented using unsigned integers and the intermediate results will never 

exceed 2m − 1. The procedure requires a single mu ltiplication, between h and 𝑥𝑥1. To 

multiply x by a =± 2𝑞𝑞  ± 2𝑟𝑟  modulo m, repeat the procedure with r instead of q, and add 

(or subtract) the results modulo m. and it is implemented in C. Note that if q = 0 in (11), 

nothing needs to be done (y = x), whereas if q = 1, one can simply add x + x, and subtract 

m if the result exceeds m − 1. We will exploit these special cases when we will select the 

parameters of our combined MRGs.  

Wu [9] introduced this method for the special case where h = 1. In this case, one obtains             

y = 2𝑞𝑞  𝑥𝑥0 + 𝑥𝑥1 , which means that the binary representation of y is obtained simply by 

exchanging the blocks of bits 𝑥𝑥0 and 𝑥𝑥1 in the binary representation of x , i.e., rotating the 

bits by q positions. This simple rotation does not change the bits of x very much. The 

Hamming weights of x and of ax mod m (i.e., the number of 1’s in their respective binary 

representations) tend to be strongly dependent when m and a have the form m = 2𝑒𝑒  − 1 

and a =± 2𝑞𝑞  ± 2𝑟𝑟 . For k = 1 (i.e., LCGs), they showed that this dependence also appears 

between the number of 1’s in the binary representations of two successive output values 

𝑢𝑢𝑛𝑛−1 and of 𝑢𝑢𝑛𝑛 , and they proposed a simple statistical test to detect it. The specific LCGs 
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proposed by Wu fail this independence test decisively, whereas LCGs whose multipliers 

have a more complicated binary representation typically pass this test. LCGs with 

multipliers of the form a =± 2𝑞𝑞  ±2𝑟𝑟  have in fact been proposed and used a long time ago: 

The infamous RANDU generator [36] has indeed a = 216  + 2+ 1 and m = 232 . These 

parameters were selected for the ease of implementation, but led to important deficiencies 

in the generator’s structure.  

 
4.5 Search for good parameters 
 
We performed computer searches to find good single and combined MRGs that can be 

implemented via the powers- of-2 decomposition method. The first search was for MRGs 

of order k = 6, with modulus m = 231− 1. With this m, we have h = 1 and we thus avoid 

the multiplication by h: We are back to the special case considered by Wu. We imposed 

the condition that each coefficient 𝑎𝑎𝑖𝑖  had to be of the form  

                                    a =± 2𝑞𝑞± 1, or a =± 2𝑞𝑞 , or a = 0. ……….. (11)  

Even with these conditions, an exhaustive search would be too long, so we made a 

random search. Almost all of the generators that we examined and that satisfied these 

conditions had a very bad lattice structure in dimension 7, 8 or 9. These generators 

typically had a good behavior in higher dimensions. The best generator that we found, 

based on the criterion 𝑀𝑀16 , has 𝑀𝑀16  = 0.25012. This is not very good. Its coefficients are 

𝑎𝑎1 = 215 , 𝑎𝑎2 = 0, 𝑎𝑎3 =− 29 + 1, 𝑎𝑎4 = 220  − 1, 𝑎𝑎5 =− 26 − 1, and 𝑎𝑎6 = 226  − 1. We call it 

MRG31k6s. It has 5 non-trivial powers of two in its coefficients, so it can be compared to 

MRG31k3p, to be presented in the next section, in terms of the number of multiplications 

by powers of two. We cannot recommend it, however, because its lattice structure is 

relatively poor and, perhaps more importantly, because the small number of powers of 2 

in the coefficients means (intuitively) that there is not much mixing of the bits, similar to, 

e.g., the generator of Wu.  

In our second search, with the same k and m, we allowed coefficients with more non-

trivial powers of 2. The condition on the coefficients was that they had to be of the form  

a =± 2𝑞𝑞  ± 2𝑟𝑟 . MRGs with good lattice structures were much easier to find under these 

relaxed conditions. The best generator that we found, based on 𝑀𝑀16 , has 𝑀𝑀16  = 𝑀𝑀48  = 0. 

59149. We call it MRG31k6l. Its coefficients are 𝑎𝑎1 = 223  + 216 , 𝑎𝑎2 = 219 − 212 ,           
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𝑎𝑎3 = 227  + 215 , 𝑎𝑎4 =− 210  − 27, 𝑎𝑎5 =− 24 − 1, and 𝑎𝑎6 = 227  + 216  . Of course, this 

generator will be slower than MRG31k3s, because there is more multiplications by 

powers of 2 to perform. We will compare their speeds at the end of the next section. Our 

third search was for combined MRGs with 2 components of order k = 3, with moduli   

𝑚𝑚1 = 231  − 1 and 𝑚𝑚2 = 231− 21069, and with some coefficients equal to zero and the 

others of the form ±2𝑞𝑞  or ±2𝑞𝑞  ± 1. We performed a random search. For each coefficient 

of each component, we specified the desired form: either 0, or ±2𝑞𝑞 ,or ±2𝑞𝑞  ± 1. Each 

coefficient received randomly between 1 to 10 possible values, depending on the 

specified form. We retained only the coefficients, for which the inequalities (11) were 

satisfied, and only the recurrences (or characteristic polynomials) that satisfied the 

maximal period conditions. We then examined all the possible combinations of one MRG 

component of each type, among those retained, to find out which combined generator 

performed best on spectral test. These combined MRG have approximatively the same 

period length as the MRGs of order 6 in our first two searches. The best combined MRG 

that we found, MRG31k3p, is described in the next section.  

 
4.5.1 A specific generator and some timing 
 
In our third search, we found the following combined MRG with J = 2 components of 

order k = 3, whose lattice structure is good at least up to 48 dimensions, with M48

                                𝑚𝑚1 = 231  − 1 = 2147483647  

 = 

0.60159. The two components are defined by the parameters  

                                𝑎𝑎11  = 0  

                                𝑎𝑎12  = 222   

                                𝑎𝑎13  = 27 + 1  

                                𝑚𝑚2 = 231  − 21069 = 2147462579  

                                𝑎𝑎21  = 215   

                                𝑎𝑎22  = 0  

                                𝑎𝑎23  = 215  + 1.  

Thus, each component has only 2 nonzero coefficients, one of them of the form 𝑎𝑎𝑖𝑖𝑖𝑖  = 2𝑞𝑞  

and the other one of the form 𝑎𝑎𝑖𝑖𝑖𝑖  = 2𝑞𝑞  + 1. This will simplify the implementation. The 

combination (4.2) is exactly equivalent to an MRG of order 3 with parameters  
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                                m = 4611640770946945613  

                                𝑎𝑎1 = 4341088847531259234  

                                𝑎𝑎2 = 2349160800583431525  

                                𝑎𝑎3 = 3927818590467337243.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Implementation of CMRG the Powers-of-2 Decomposition method 

y1 = (((s11 & mask12) << 22) + (s11 >> 9)) + (((s12 & mask13) << 7) + (s12 >> 24)); 

if (y1 > m1) then y1 -= m1;  

   y1+= s12;  

if (y1 > m1) then y1 -= m1; 

s12 = s11; s11 = s10; s10 = y1; /* Second component */  

y1 = ((s20 & mask21) << 15) + 21069 * (s20 >> 16);  

if (y1 > m2) then y1 -= m2;  

y2 = ((s22 & mask21) << 15) + 21069 * (s22 >> 16);  

if (y2 > m2) then  y2 -= m2;  

y2 += s22; 

if (y2 > m2) then y2 -= m2;  

y2 += y1;  

if (y2 > m2) then y2 -= m2;  

s22 = s21; s21 = s20; s20 = y2; /* Combination */ 

if (s10 <= s20) then  return ((s10 - s20 + m1) * norm);  
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This generators has 2 distinct cycles of length ρ = 𝑚𝑚1𝑚𝑚2 / 2 ≈ 2185 . Figure 4.2 gives an 

implementation of this generator in the C language. In this code, the bit masks mask* are 

used to separate the bits of the 𝑠𝑠𝑗𝑗 ,𝑖𝑖’s in 2 blocks as explained in Section 4.4.1. For 

example, mask12 contains 23 zeros followed by 9 ones. So, in the first line of the code 

for the first component, the statement  

                                        ((s11 & mask12) << 22) + (s11 >> 9) 

extracts the 9 least significant bits of x11, shifts them to the left by 22 positions, and adds 

this to s11 shifted to the right by 9 positions. The result is the product of s11 by            

𝑎𝑎12  = 222 , modulo 𝑚𝑚1 = 231  − 1. The other products are implemented in a similar way. 

The several instructions of the form  

                                          if (y2 > m2) y2 -= m2;  

are necessary to avoid overflow. Indeed, since the terms added are between 0 and 231− 1 

and since unsigned integers cannot exceed 232  − 1, we cannot safely add more than 2 

terms at a time without reducing the sum modulo 𝑎𝑎𝑗𝑗 .  

To have an idea of the speed improvement of this new generator over the previous 

combined MRG implementations, for each generator we generated 10 million (107) 

random numbers and added them up, looked at how much CPU time it took (user time + 

system time), and printed the sum (this may be convenient for checking correctness of an 

implementation). In all cases, each integer in the seed was 12345.  
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                                                                                                             Chapter 5 

                                                                                                                         Results 

 

These figures have been shown the timing for corresponding any arbitrary numbers. The 

timings for the C++ compilers are practically identical to those with the corresponding C 

compiler. 

         

               Figure 5.1(a): Resulting time for integers 

         

               Figure 5.1(b): Time resulting for long numbers 
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The period length is indicated, the type of implementation (AF for approximate factoring, 

FP for floating-point, and P2D for powers-of-2 decomposition), and the sum of the 107 

numbers generated. The generator MRG31k3p is that of Figure 4.2, MRG31k6s and 

MRG31k6l were introduced in the previous section, MRG32k3a is the combined MRG 

proposed and combMRG96b is a variant of combMRG96a with the moduli and 

multipliers defined as constants in the code instead of variables as in combMRG96a. 

Aside from MRG31k3s, which we discard because of its poor performance in the spectral 

test. This illustrates the fact that speed comparisons depend heavily on compilers and 

machine architecture. The generator of figure 4.2 gives only 31 bits of precision even 

though it returns 53-bit floating-point numbers. If more precision is desired, one can 

combine two successive numbers produced by the generator to construct each output 

value. For example, if MRG31k3p outputs the sequence 𝑢𝑢1 , 𝑢𝑢2 ,..., one can use the 

sequence 𝑣𝑣1 , 𝑣𝑣2 ,.. of pseudo random numbers defined by 𝑣𝑣𝑖𝑖  = (ν𝑢𝑢2𝑖𝑖  + 𝑢𝑢2𝑖𝑖−1 ) mod 1 for 

some constant ν between 2−21  and 2−32 . 
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Chapter 6 

                                                                                 Conclusion & Future Scope 

 

6.1 Conclusion: 

Combined MRGs with multipliers of the form ± 2𝑞𝑞  ± 2𝑟𝑟  are the fastest good-quality 

MRGs available to date, when comparing generators having approximatively the same 

period length. These combined MRG possess good theatrical properties in terms of their 

period length and the quality of their lattice structure, and behave well in empirical 

statistical tests.  

6.2 Future Scope: 

In the future, to search for good generators of this form by applying the spectral test not 

only to the vectors of successive output values produced by the generator (as usual), but 

to certain vectors of non-successive output values as well, as suggested by L’Ecuyer and 

Lemieux in the context of selecting lattice rules for quasi-Monte Carlo integration. These 

combined MRGs could also be combined with small, efficient, nonlinear generators to 

destroy the (linear) lattice structure and we intend to analyze such combinations. 
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