
RANDOM NUMBER GENERATION AND ITS BETTER

TECHNIQUE
 A thesis submitted in partial fulfillment of the requirements

for the award of degree of

Master of Engineering

in

 Computer Science and Engineering

Submitted By

Prasada Rao Gurubilli

(Roll No: 800832004)

Under the supervision of

Dr. Deepak Garg

Assistant Professor

COMPUTER SCIENCE AND ENGINEERING DEPARTMENT

 THAPAR UNIVERSITY

 PATIALA – 147004

 June 2010

iii

Abstract

Random number generators based on linear recurrences modulo 2 are among the fastest

long-period generators currently available. The uniformity and independence of the

points they produce, over their entire period length, can be measured by theoretical

figures of merit that are easy to compute, and those having good values for these figures

of merit are statistically reliable in general. Some of these generators can also provide

disjoint streams and substreams efficiently. In this paper, we review the most interesting

construction methods for these generators, examine their theoretical and empirical

properties, and make comparisons.

Random number generation is the art and science of deterministically generating a

sequence of numbers that is difficult to distinguish from a true random sequence. This

thesis introduces the field of random number generation, and studies three types of

random number generators in depth. It also includes mathematical techniques for

transforming the output of generators to arbitrary distributions, and methods of evaluating

and comparing random number generators. It concludes with a summary and historical

perspective on the field of random number generation. The mathematics in this thesis is

drawn mainly from number theory, with a few fundamental ideas taken from probability

and statistics.

iv

 Table of Contents

Certificate ..i

Acknowledgement .. ii

Abstract ... iii

Table of Contents ... iv

List of Figures ...vii

List of Tables ... viii

List of Abbreviations……………………………………………………………………ix

Chapter 1:Introduction .. 1

 1.1 What is a random number generator? ………………………………………………1

 1.2 Transformation of the original sequence……………………………………………2

 1.3 What makes a good random number generator? ……………………………………2

 1.4 Types of random number generators………………………………………………..4

 1.5 Applications of random numbers……………………………………………...…….7

Chapter 2: Literature Review .. ………..9

 2.1 Desirable Attributes of Random Numbers…………………………………………..9

 2.2 Methods of random numbers………………………………………………………..9

 2.2.1 Mid Square Method…………………………………………………………...9

 2.2.2 The Linear Congruential Method…………………………………………….12

v

 2.2.2.1 Properties of Congruential Generators……………………………….13

 2.2.2.2 LCG Full period……………………………………………………...15

 2.2.2.3 Multiplicative congruential Method…………………………….…...16

 2.2.2.4 Merits and Demerits of LCG………………………………………...18

 2.2.3 Quadratic Congruential Method……………………………………………..19

 2.2.4 Fibonacci Generator………………………………………………………….20

 2.2.5 Combined Multiple Recursive Generator (CMRG)………………………….21

 2.2.6 Additive number generator…………………………………………………..24

 2.2.7 Combination of random number generator…………………………………..25

Chapter 3: Problem Statement ... 28

Chapter 4: Design and Implementation .. 29

 4.1 Multiple Recursive Generators……………………………………………………29

 4.1.1 Feedback Shift Register Generators………………………………………...30

 4.2 Combined MRGs………………………………………………………………….32

 4.3 Overview of the Remainder……………………………………………………….33

 4.4 Lattice Structure and Quality Criteria……………………………………………..34

 4.4.1 Implementation by the powers of 2- decomposition method……………….35

 4.5 Search for good parameters……………………………………………………….36

 4.5.1 A specific generator and some timings……………………………………...36

Chapter 5: Results ... 40

vi

Chapter 6: Conclusion and Future Scope ... 42

6.1 Conclusion ... 42

6.2 Future Scope .. 42

References .. 43

List of Publications ...………………………………………………………………......46

vii

 List of Figures

Figures:

Figure 1.1: Generating the random numbers……………………………………………...3

Figure 1.2: Generating 100000 random dots……………………………………………...4

Figure 1.3: A PCI version (rw4) generating true random numbers at 160 MByte/s……...5

Figure 1.4: Quasi-random numbers……………………………………………………….6

Figure 1.5: Pseudorandom numbers………………………………………………………7

Figure 2.1: 4096 generated points on the unit square……………………………………16

Figure 4.1: Feedback Shift Register Generators…………………………………………31

Figure 4.2: Implementation of a CMRG with Powers-of-2 Decomposition method……38

Figure 5.1(a): The resulting time for integers…………………………………………....40

Figure 5.1(b): The resulting time for long integers………………………………………40

viii

 List of Tables

Tables:

Table 2.1: Sample random numbers using mid square method………………….………10

Table 2.2: Subscript pairs yielding long period mod 2………………………………….25

Table 4.1: Generate the binary numbers using FSRG…………………………………...31

ix

List of Abbreviations

TRNGs True random Number Generators

QRNGs Quasi-random Number Generators

PRNGs Pseudorandom Number Generators

LCG Linear Congruential Generators

FG Fibonacci Generators

CMRG Combined Multiple Recursive Generator

MRG Multiple Recursive Generator

ANG Additive Number Generator

FSRG Feedback Shift Register Generators

FP Floating Point

AF Approximate Factoring

P2D Powers-of-2 Decomposition

1

 Chapter1

Introduction

1.1 What is a random number generator?

Most random number generators generate a sequence of integers by the following

recurrence:

 X0 = given, Xn+1 = a Xn + b (mod N) n = 0,1,2,... (i)

The notation mod N means that the expression on the right of the equation is divided by

N, and then replaced with the remainder.

To understand the mechanics consider the following simple Example. (Choose Example

on the applet to study this example further.)

 X0 = 79, N = 100, a = 263, and b = 71

Then

 X1 = 79*263 + 71 (mod 100) = 20848 (mod 100) = 48,

 X2 = 48*263 + 71 (mod 100) = 12695 (mod 100) = 95,

 X3 = 95*263 + 71 (mod 100) = 25056 (mod 100) = 56,

 X4 = 56*263 + 71 (mod 100) = 14799 (mod 100) = 99,

Subsequent numbers are: 8, 75, 96, 68, 36, 39, 28, 35, 76, 59, 88, 15, 16, 79, 48. The

sequence then repeats. (This indicates a weakness of our example generator: If the

random numbers are between 0 and 99 then one would like every number between 0 and

99 to be a possible member of the sequence. The parameters a, b and N determine the

characteristics of the random number generator, and the choice of x0 (the seed)

determines the particular sequence of random numbers that is generated. If the generator

2

is run with the same values of the parameters, and the same seed, it will generate a

sequence that's identical to the previous one. In that sense the numbers generated

certainly are not random. They are therefore sometimes referred to as pseudo random

numbers.

1.2 Transformation of the original sequence

Of course one may want random numbers not as integers in a given range, but for

example as uniformly distributed real numbers in a certain interval, or perhaps as real

numbers of (almost) arbitrary size, but clustered around the origin. Distributions of that

sort can be obtained by suitably transforming the original random numbers. For example,

to transform a sequence defined as above into an evenly distributed set of real numbers in

the interval from 0 to 1 simply divide each of the original numbers by N. In the remainder

of this page, though, we just consider the sequence defined by (i) itself.

1.3 What makes a good random number generator?

That's a good question! Several answers are possible, for example:

• The sequence generated by (i) isn't random at all, so there is no good

random number generator of that form.

• A sequence (i) is good if it passes several well established statistical tests.

• Or, it's good if it gives good results in particular applications (where of

course the meaning of "good results" is heavily dependent upon the

context).

The applet on this page takes a different tag. It plots a certain number of points

(Xi , Xi+k) for certain values of k = 1,2,3,... . Intuitively, for a random sequence, one

should obtain a set of points distributed "evenly", "randomly" or "uniformly" over a

square. It is not easy to make these concepts precise, but it is sometimes glaringly

apparent when a set of points is not distributed in this way. Plotting 100 points with k=1

for our example generator above generates the picture nearby. (It's is shown here at half

its original size.)

3

 Figure 1.1: Generating the random numbers [18]

In the figure 1.1(a), the first coordinate measures horizontal distance from the left margin

of the red box, and the second coordinate measures vertical distance downwards from the

upper margin of the red box. Thus some of the points in this box have coordinates

(79,48), (48,95), (95,56), etc. The values of the coordinates are scaled to fill the entire red

box (which in this case measure 200 by 200 pixels). It's clear that there are only 20,

points, and, since 100 were drawn, five lie on top of each other for each of the black dots.

Moreover, the dots appear to lie along six slanted lines. As pointed out above, for a

"good" random number generator there should be 100 points, and the distribution should

be “random".

The figure 1.1 nearby shows a distribution of 1,000 points obtained with a widely used

and well tested and analyzed random number generator using

 a = 16807, b = 0, and N= 2 31

This generator is described in the reference by Park and Miller given below.

 -1 = 2147483647.

One reason for the seemingly peculiar choice of N is that that particular number is the

largest integer than can be represented on a Unix machine or in Java.

4

To illustrate the abilities of this applet consider the following Figure1.2 which shows

three sequences of 100,000 points each, using the same generator, for k=1 (red), k = 2

(green), and k=3 (blue). Reassuringly, no systematic patterns are no systematic patterns

are readily apparent.

 Figure 1.2: Generating 100000 random dots [18]

1.4 Types of random number generators

Random number generators can be classified into three groups, according to the source of

their "randomness":

5

True random number generators (TRNGs):

 Truly random is defined as exhibiting

“true” randomness, such as the time between “tics” from a Geiger counter exposed to a

radioactive element. This type uses a physical source of randomness to provide truly

unpredictable numbers. TRNGs are mainly used for cryptography, because they are too

slow for simulation purposes. Many true random number generators are hardware

solutions that you plug to a computer. The usual method is to amplify noise generated by

a resistor (Johnson noise) or a semi-conductor diode and feed this to a comparator or

Schmitt trigger. Once you sample the output, you get a series of bits which can be used

to generate random numbers. True random number generators can be used for research,

modeling, encryption, lottery prediction and parapsychological testing, among many

other uses.

Figure 1.3: A PCI version generating true random numbers at 160 MByte/s [19]

Quasi-random number generators (QRNGs): Quasi-random is defined as filling the

solution space sequentially (in fact, these sequences are not at all random - they are just

comprehensive at a preset level of granularity). These generators attempt to evenly fill an

n-dimensional space with points, without clustering or grouping of points. Although

QRNGs are used in Monte Carlo simulations, we do not consider them in this chapter. If

we change our generator so as to maintain a nearly uniform density of coverage of the

domain then we have a random number generator known as quasi-random number

generator. Quasi-random numbers give up serial independence of subsequently generated

6

values in order to obtain as uniform as possible coverage of the domain. This avoids

clusters and voids in the pattern of a finite set of selected points.

 Figure 1.4: Quasi-random numbers [19]

Pseudorandom number generators (PRNGs):

An orthogonal classification of random number generators is organized according to the

distribution of the numbers that are produced. Commonly encountered library functions,

 Pseudorandom is defined as having the

appearance of randomness, but nevertheless exhibiting a specific, repeatable pattern. The

most common type of random number generator, PRNGs are designed to look as random

as a TRNG, but can be implemented in deterministic software because the state and

transition function can be predicted completely. In this chapter, we don’t consider only

this type of generator.

7

such as C's rand()

, sample from the uniform distribution, meaning that within some range

of numbers, each value is equally likely to occur.

 Figure 1.5: Pseudorandom numbers [19]

1.5 Applications of random numbers

Numbers that are "chosen at random" are useful in many different kinds of applications.

For example:

Simulation: When a computer is being used to simulate natural phenomena, random

numbers are required to make things realistic. Simulation covers many fields, from the

study of nuclear physics (where particles are subject to random collisions) to operations

research (where people come into, say, an airport at random intervals).

8

Sampling: It is often impractical to examine all possible cases, but a random sample will

provide insight into what constitutes "typical" behavior.

Numerical analysis: Ingenious techniques for solving complicated numerical problems

have been devised using random numbers.

Computer programming: Random values make a good source of data for testing the

effectiveness of computer algorithms.

Decision making: There are reports that many executives make their decisions by

flipping a coin or by throwing darts, etc. It is also rumored that some college professors

prepare their grades on such a basis. Sometimes it is important to make a completely

"unbiased decision; this ability is occasionally useful in computer algorithms, for

example in situations where a fixed decision made each time would cause the algorithm

to run more slowly. Randomness is also an essential part of optimal strategies in the

theory of games.

Recreation: Rolling dice, shuffling decks of cards, spinning roulette wheels, etc., are

fascinating pastimes for just about everybody. These traditional uses of random numbers

have suggested the name "Monte Carlo method," a general term used to describe any

algorithm that employs random numbers.

9

 Chapter 2

 Literature Review

2.1 Desirable Attributes of Random Numbers

The following are the desirable attributes of random numbers.

1. The random numbers should be uniformly distributed.

2. They should be statically independent.

3. Though the stream of random numbers will repeat depending on the parameters

used in their generation, the stream length should be sufficiently larger than the

desired length for a particular application.

The generation of random numbers should be faster.

Generating uniform random numbers: In this section we shall consider methods for

generating a sequence of random fractions, i.e., random real numbers Un uniformly

distributed between zero and one. Since a computer can represent a real number with

only finite accuracy, we shall actually be generating integersXn , between zero and some

number m; the fraction

 Un = Xn /m

will then lie between zero and one. Usually m is the word size of the computer, so Xn

may be regarded (conservatively) as the integer contents of a computer word with the

radix point assumed at the extreme right, and U, may be regarded (liberally) as the

contents of the same word with the radix point assumed at the extreme left.

2.2 Methods of random numbers

2.2.1 Mid Square Method

The mid square method was proposed by Von-Newmann and Metropolis in 1946. In this

method of random number generation, an initial seed is assumed and that number is

10

squared. The middle four digits of the squared value are taken as the first random number.

Next, the random number which is generated most recently is again squared and the

middle most four digits of this squared value are assumed as the next random number.

This is to be repeated to generate the required number of random numbers.

This method is demonstrated as shown in Table 2.1 by assuming the initial seed as 8765

Serial

number

n(Four

digits)
𝑛𝑛2

1 8765 76825225

2 8252 68095504

3 0955 00912025

4 9120 83174400

5 1744 03041536

6 0415 00172225

7 1722 02965284

8 9652 93161104

9 1611 Etc

 Table2.1: Sample random numbers using mid square method

Steps of mid-square method:

The following are the steps of mid square method

 Step 1: Input a four digit number, n and set the value of I to 1.

 Step 2: Square the four digit number n.

11

 Step3: Store the square of n into a string variable (X).

 Step4: Add necessary number of zeros to the left of X so as to have a total of

eight characters in X.

 Step5: Select the middle four characters in X and store these four characters in

the variable n.

 Treat the value of n as the I th random number.

 Step6: I = I + 1

 Step7: If I is less than or equal to the required number of random numbers, then

 go to step 2, else go to step 8.

 Step8: Stop.

The pseudo-code of this algorithm is given

 Input n (* Four digit number)

 N (* Number of random numbers required)

 For I = 1 to n do

 {

 n_square = n^2

 n_string = n_square (* Convert n_square into n_string)

 count the number of characters(n1) in n_string

 if n1 < 8 then do

 {

 add (8-n1) zeros to the left of n_string

 }

12

 X = middle four characters on n_string

 n = X (* convert string into integer)

 print I, n

 }

 Stop

Limitations of mid square method:

• Relatively slow

• Statistically unsatisfactory

• Sample of random numbers may be too short

• There is no relationship between the initial seed and the length of the sequence of

random numbers

2.2.2 The Linear Congruential Method

By far the most popular random number generators in use today are special cases

of the following scheme, introduced by D. H. Lehmer in 1949. We choose four "magic

numbers:

 m, the modulus; m > 0.

 a, the multiplier; 0 ≤ a < m.

 c, the increment; 0 ≤ c < m.

 X0, the starting value; 0 ≤ X0 < m.

The desired sequence of random numbers (Xn) is then obtained by setting

 Xn+1 = (a Xn + c)mod m, n ≥ 0 ………….. (1)

This is called a linear congruential sequence.

For example, the sequence obtained when m = 10 and X0 = a = c = 7 is

 7,6,9,0,7,6,9,0,……….. …………….. (2)

13

As this example shows, the sequence is not always "random" for all choices of m, a, c,

and X0. Example (2) illustrates the fact that the congruential sequences always "get into a

loop"; i.e., there is ultimately a cycle of numbers that is repeated endlessly. This property

is common to all sequences having the general form Xn+1 = f(Xn); the repeating cycle is

called the period; sequence (2) has a period of length 4. A useful sequence will of course

have a relatively long period.

The special case c = 0 deserves explicit mention, since the number generation process is a

little faster when c = 0 than it is when c # 0. Lehmer's [15] original generation method

had c = 0, although he mentioned c # 0 as a possibility; the idea of taking c # 0 to

obtain longer periods is due to Thomson.

When the increment c=0, it is called multiplicative congruential method. When the

increment c≠0, it is called mixed congruential method. The choice of a, c, m and

X
0

2.2.2.1 Properties of Congruential Generators

drastically affects the statistical properties and cycle length.

All of the pseudorandom generators examined in this thesis are congruential generators

where each term is defined recursively in terms of the k immediately preceding terms. We

call this type of generator a recursive congruential generator, and it is expressed

mathematically as

 𝑥𝑥𝑛𝑛 = f(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛−2 ,... , 𝑥𝑥𝑛𝑛−𝑘𝑘) mod m

Note that f need not be linear, and need not use all k terms. We do assume that k is as

small as possible, so x n depends on 𝑥𝑥𝑛𝑛−𝑘𝑘 . For example, in an LCG, f is defined by

a𝑥𝑥𝑛𝑛−1 + c, and k = 1. However, f can be an arbitrary function, and 𝑥𝑥𝑛𝑛= a𝑥𝑥𝑛𝑛−1 + (𝑥𝑥𝑛𝑛−7)2

is a perfectly good recursive congruential generator. This theorem provides an upper

bound on the period, which is formalized in the subsequent corollary.

Lemma2.2.2.1: Let x and n be integers. If x < n and x ∤ n, then there exists a positive

integer k such that n − x < kx < n.

14

Theorem2.2.2.1: Suppose a recursive congruential generator produces the sequence (𝑥𝑥𝑛𝑛),

so 𝑥𝑥𝑛𝑛 = f(𝑥𝑥𝑛𝑛−1, 𝑥𝑥𝑛𝑛−2 ,... , 𝑥𝑥𝑛𝑛−𝑘𝑘) mod m for constants k and m. If a k-tuple repeats, or

(𝑥𝑥𝑎𝑎 , 𝑥𝑥𝑎𝑎+1,. .., 𝑥𝑥𝑎𝑎+𝑘𝑘) = (𝑥𝑥𝑎𝑎+𝑐𝑐 , 𝑥𝑥𝑎𝑎+𝑐𝑐+1,... , 𝑥𝑥𝑎𝑎+𝑐𝑐+1) for some a and c, then 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖+𝑐𝑐 for all

i ≥ a. Furthermore, the period λ divides c.

Corollary2.2.2.1: Any recursive congruential generator defined in terms of the k

preceding terms has maximal period 𝑚𝑚𝑘𝑘 .

Note that this theorem only states that a recursive congruential generator cannot have a

period longer than 𝑚𝑚𝑘𝑘 ; it does not imply that a generator can achieve period 𝑚𝑚𝑘𝑘 . The

preceding theorems enable us to place an upper bound on equidistribution of a

congruential sequence, as formalized in the following theorem.

Theorem2: Any recursive congruential generator defined in ter ms of the k preceding

terms can be equidistributed in no more than k dimensions.

Generating Real Values: Congruential generators produce integers in the discrete set

ℤ𝑚𝑚 . Many applications, however, assume random sequences of numbers drawn from a

real interval. A computer has finite memory, so it cannot represent all real numbers with

infinite precision, but it can approximate them up to the precision of its numerical

representation by using a finite set of closely spaced rational numbers. Most generators

are congruential and thus integer-valued, so a method is needed to transform their output

to an approximation of real numbers in [0, 1). Typically, this transformation is done by

dividing each term in the sequence by the modulus. The new sequence is then distributed

over the set { 𝑛𝑛
𝑚𝑚

 : n ∈ ℤ𝑚𝑚 }, which approximates the real interval [0, 1) well when m is

large. However, the distance between any two terms in the sequence can be no smaller

than 1
𝑚𝑚

 . Whether a given value of m leads to a sufficiently accurate approximation of the

real interval depends on the requirements of the application. Most congruential generators

strive to generate numbers uniformly in ℤ𝑚𝑚 , so when they are transformed to real values

they approximate the uniform probability distribution on the interval [0,1), which we

denote U[0, 1).

15

2.2.2.2 LCG Full period: m is c ≠ 0, m − 1 otherwise (if c = 0, 0 is a fixed point for the

recurrence). Considere the case c ≠0.

Theorem (Period): The LCG has full period if and only if the following three conditions

hold:

1. The only positive integer that (exactly) divides both m and c is 1;

2. If q is a prime number that divides m, then q divides a− 1;

3. If 4 divide m, then 4 divide a-1.

A popular LCG is the”standard minimal”, as known from the terminology introduced by

Park and Miller in 1988:

 𝑋𝑋𝑛𝑛+1 = 16807𝑋𝑋𝑛𝑛 mod 2147483647.

Observe that 2147483647 = 231 − 1 ; on 3 2-bit architectures, the largest representable

(signed) integer is 231 .

The Standard Minimal Generator

#define a 16807

#define m 2147483647

#define AM_MIL (1.0/m)

#define IQ_MIL 127773

#define IR_MIL 2836

double ran_standardminimal_get_val(long * state)

{

 long k;

double ans; k=(* state)/IQ_MIL;

idum=a * (* state-k * IQ_MIL)-IR_MIL * k;

16

if (* state < 0) * state += m;

ans=AM_MIL * (* state); return ans;

}

 Figure 2.1: 4096 generated points on the unit square

2.2.2.3 Multiplicative congruential Method

The multiplicative congruential method is an arithmetic procedure to generate a finite

sequence of uniformly distributed random numbers. Two integers P and Q are congruent

if their difference is an integral multiple of m. This is represent as shown below

 P ≡ Q (mod m)

This means that” P is congruent to Q modulo m” and further the following are true

1. (P-Q) is divisible by m.

17

2. P and Q, when divided by m, leave identical remainders.

Some examples of congruent relationships are shown below.

 53738 ≡ 38(mod 100)

 97 ≡ 67(mod 11)

Let iX be the ith uniformly distributed random number.

Then (i+1)th random number is given by the following relation.

 1iX + = a iX (mod m)

 where a and m are nonnegative integers.

That is, 1iX + = Remainder of [(a iX)/m]

The range of the random number that will be generated using this relation is from 0 to 1.

The value of m is given by the following formula

 m = 2r

Where r is the number of bits in the computer word.

The value of a is given by the following formula

 a = 8t ± 3

 where t is any positive integer.

The initial value of iX (That is 0X) is any positive old integer.

The steps of the multiplicative congruential method for generation of uniformly

distributed random numbers are presented as follows:

Step 1: Input the following:

1. Choose any number less than nine digits and assign it to 0X .

2. Assign at least five digits value for a.

3. Value for m.

Step 2: Set i = 1

 X = 0X

Step 3: Find the product of a and X

 Y = a x X

Step 4: Divide Y by m and do the following.

18

 Step 4.1: Store the remainder as the ith random number.

 iR = Remainder of [Y/m] = Y – Int[Y/m] x m

 Step 4.2: Store the quotient as X.

 X = Int[y/m]

Step 5: Store or print or use the ith random number (iR).

Step 6: i = i +1

Step 7: If I is less than or equal to the required number of random numbers, then go to

 step3, else go to step 8.

Step 8: Stop.

The pseudo-code of this algorithm is shown

 Input X0 (* 9 digits number)

 a (* at least 5 digits number)

 m

 N (* number of required random numbers)

 Initialize X = X0

 for i = 1 to N do

 {

 Y = a*X

 Z = Y/m

 R(i) = Y –(int (Z)*m)

 X = int (Z) (* integer of Z)

 Print R(i)

 }

 stop.

2.2.2.4 Merits and Demerits of LCG

• LCGs are fast and require minimal memory (typically 32 or 64 bits) to retain

state. This makes them valuable for simulating multiple independent streams.

• Linear congruential random number generators are widely used in simulation and

Monte Carlo calculations. Because they are very fast, and because they have

19

minimal state space, they remain attractive for use in parallel computing

environments.

• LCGs should not be used for applications where high-quality randomness is

critical. For example, it is not suitable for a Monte Carlo simulation because of

the serial correlation (among other things). They should also not be used for

cryptographic applications.

• LCGs tend to exhibit some severe defects. For instance, if an LCG is used to

choose points in an n-dimensional space, the points will lie on, at most, m1/n hyper

planes (Marsaglia's Theorem, developed by George Marsaglia). This is due to

serial correlation between successive values of the sequence Xn. The spectral test,

which is a simple test of an LCG's quality, is based on this fact.

• A further problem of LCGs is that the lower-order bits of the generated sequence

have a far shorter period than the sequence as a whole if m is set to a power of 2.

In general, the nth least significant digit in the base b representation of the output

sequence, where bk = m for some integer k, repeats with at most period bn

• Nevertheless, LCGs may be a good option. For instance, in an embedded system,

the amount of memory available is often very severely limited. Similarly, in an

environment such as a

.

video game console taking a small number of high-order

bits of an LCG may well suffice. The low-order bits of LCGs when m is a power

of 2 should never be relied on for any degree of randomness whatsoever. Indeed,

simply substituting 2n

2.2.3 Quadratic Congruential Method

 for the modulus term reveals that the low order bits go

through very short cycles. In particular, any full-cycle LCG when m is a power of

2 will produce alternately odd and even results.

It is proposed by R.R.Coveyou. It is used to get more random numbers.

 Xn+1 = (dXn
2 + aXn + c)mod m …………………… (3)

The conditions on d, a and c required for the maximum period (which matches the

modulus) are:

1. c must be relatively prime to the modulus.

http://en.wikipedia.org/wiki/Hyperplanes�
http://en.wikipedia.org/wiki/Hyperplanes�
http://en.wikipedia.org/wiki/Hyperplanes�
http://en.wikipedia.org/w/index.php?title=Marsaglia%27s_Theorem&action=edit&redlink=1�
http://en.wikipedia.org/wiki/George_Marsaglia�
http://en.wikipedia.org/w/index.php?title=Spectral_test&action=edit&redlink=1�
http://en.wikipedia.org/wiki/Video_game_console�

20

2. a is equal to 1 modulo every odd prime factor of the modulus.

3. d is equal to 0 modulo every odd prime factor of the modulus.

4. If the modulus is divisible by 4, then a is equal to 1 modulo 2, and d is equal to

 a-1 modulo 4

5. If the modulus is divisible by 2, either d is even and a is odd, which is the only

possibility if the modulus is divisible also by 4, or d is odd and a is even

6. If the modulus is divisible by 9, either a is equal to 0 modulo 9, or a is equal to 1

modulo 9, and d times c is equal to 6 modulo 9.

An interesting quadratic method has been proposed by R.R. Coveyou when m is a power

of two.

 X0mod 4 = 2 Xn+1 = Xn(Xn + 1)mod 2e ……………….(4)

This sequence can be computed with about the same efficiency as (1), without any

worries of overflow.

2.2.4 Fibonacci Generator

The simplest sequence in which Xn+1 depends on more than one of the preceding values

is the Fibonacci sequence,

 Xn+1 = (Xn + Xn−1) mod m. ……………………………. (5)

This generator was considered in the early 1950s, and it usually gives a period length

greater than m; but tests have shown that the numbers produced by the Fibonacci

recurrence (5) are definitely not satisfactorily random.

Problems with Fibonacci Generator (FG):

• The initialization of FGs is a very complex problem. The output of FGs is very

sensitive to initial conditions, and statistical defects may appear initially but also

periodically in the output sequence unless extreme care is taken.

• Another potential problem with FGs is that the mathematical theory behind them

is incomplete, making it necessary to rely on statistical tests rather than

theoretical performance

21

2.2.5 Combined Multiple Recursive Generator (CMRG)

An approach is to combine two or more multiplicative congruential generators to have

good statistical properties and longer periods.

 Xn = (Xn + Xn−k)mod m …………………………... (6)

When k is a comparatively large value.

When k ≤ 15, the sequence fails to gap test. The gap test means counts the number of

digits that appear between repetitions of a particular digit and then uses the Kolmogorov-

Smirnov test to compare with the expected number of gaps.

Consider two (or more) MRG’s working in parallel:

X1,n = (a1,1X1,n−1 + ··· + a1,kX1,n−k) mod m1 ,

X2,n = (a2,1X2,n−1 + ··· + a2,kX2,n−k) mod m2 .

We de fine the two combinations

Zn : = (X1,n − X2,n) mod m1 ; Un := Zn /m1;

Wn := (X1,n /m1 − X2,n /m2) mod 1.

The sequence {Wn , n ≥ 0} is the output of an other MRG, of module m = m1m2 , and

{Un , n ≥ 0 } is nearly the same sequence if m1 and m2 are close. We can achieve the

period (𝑚𝑚1
𝑘𝑘 − 1)(𝑚𝑚2

𝑘𝑘 − 1)/2.

MRG32k3a: The following combined MRG was proposed by L’Ecuyer, and is amongst

the most popular and efficient known generators. It combines 2 MRG’s.

k = 3,

m1 = 232 − 209, a11 = 0, a12 = 1403580, a13 = −810728,

m2 = 232 − 22853, a22 = 527612, a22= 0, a23 = −1370589.

Combination: Zn = (X1,n −X2,n) mod m1 .

Corresponding MRG: k = 3, m = m1m2 = 18446645023178547541,

22

a1 = 18169668471252892557,

a2 = 3186860506199273833,

a3 = 8738613264398222622.

Period ρ = (𝑚𝑚1
3 − 1)(𝑚𝑚2

3 − 1)/2 ≈ 2191

MRG32k3a Implementation:

#define norm 2.328306549295728e-10 / * 1/(m1+1) * /

#define m1 4294967087.0

#define m2 4294944443.0

 #define a12 1403580.0

#define a13n 810728.0

#define a21 527612.0

#define a23n 1370589.0

double s10, s11, s12, s20, s21, s22;

double MRG32k3a ()

{

long k;

double p1, p2;

/* Component 1 */

p1 = a12 * s11 - a13n * s10;

k = p1 / m1;

p1 -= k * m1;

23

if (p1 < 0.0) p1 += m1;

s10 = s11;

s11 = s12;

s12 = p1; /* Component 2 */

p2 = a21 * s22 - a23n * s20;

k = p2 / m2; p2 - = k * m2;

if (p2 < 0.0) p2 += m2;

s20 = s21; s21 = s22;

s22 = p2;

/* Combination */

if (p1 <= p2)

return ((p1 - p2 + m1) * norm);

else return ((p1 - p2) * norm);

}

The generator ”L’Ecuyer” presentin AMLET is a combination of two LCG’s. It is a bit

less efficient than MRG32K3a (which will replace it in a future version), but still very

good.

Merits of CMRG:

Combining parallel multiple recursive sequences provides an efficient way of

implementing random number generators with long periods and good structural

properties. Such generators are statistically more robust than simple linear congruential

generators that fit into a computer word

24

2.2.6 Additive number generator (ANG)

It was devised by G.J.Mitchell and D.P. Moore.

 Xn = (Xn−24 + Xn−55)mod m, n ≥ 55 ………………… (7)

where m is even and X0, ……….., X54 are arbitrary integers not all even. The constants

24 and 55 in this definition were not chosen at random; they are special values that

happen to have the property that the least significant bits (Xn mod 2) will have a period

of length 255 - 1. Therefore the sequence (Xn) must have a period at least this long.

Algorithm (Additive number generator):

Memory cells Y [I], Y [2],....., Y [55] are initially set to the valuesX54 , X53 , . . . , X0,

respectively; j is initially equal to 24 and k is 55. Successive performances of this

algorithm will produce the numbers X55 , X56 . . . as output.

 Al. [Add.] (If we are about to output Xn at this point, Y[j] now equals Xn−24 and Y[k]

equals Xn−55 .) Set Y[k]  (Y[k] + Y[j]) mod 2e , and output Y[k].

 A2. [Advance.] Decrease j and k by 1. If now j = 0, set j  55; otherwise if k = 0,

 set k  55.

This generator is usually faster than the previous methods we have been discussing, since

it does not require any multiplication. Besides its speed, it has the longest period we have

seen yet; and it has consistently produced reliable results, in extensive tests since its

invention in 1958. Furthermore, as Richard Brent has observed, it can be made to work

correctly with floating point numbers, avoiding the need to convert between integers and

fractions. Therefore it may well prove to be the very best source of random numbers for

practical purposes. The only reason it is difficult to recommend sequence (7)

wholeheartedly is that there is still very little theory to prove that it does or does not

have desirable randomness properties; essentially all we know for sure is that the period

is very long, and this is not enough. John Reiser (Ph. D. thesis, Stanford Univ., 1977)

has shown, however, that an additive sequence like (7) will be well distributed in high

dimensions, provided that a certain plausible conjecture is true.

25

The fact that the special numbers (24, 55) in (7) work so well follows from theoretical

results developed in some of the exercises below. Table 1 lists all pairs (I, k) for which

the sequence Xn = (Xn−l + Xn−k) mod 2 has period length 2k - 1, when k < 100. The

pairs (1, k) for small as well as larger k are shown, for the sake of completeness; the pair

(1, 2) corresponds to the Fibonacci sequence mod 2, whose period has length 3.

However, only pairs (1, k) for relatively large k should be used to generate random

numbers in practice.

 Table 2.2: Subscript pairs yielding long period mod 2[14]

Merits:

It is faster than previous methods since it does not require any multiplication. It can be

made to work correctly with floating point numbers, avoiding the need to convert

between integers and fraction.

2.2.7 Combination of random number generator

Suppose we have two sequences X0, X1, ….. and Y0, Y1, …….. of random numbers

between 0 and m-1, preferably generated by two unrelated methods.

26

 Zn = (Xn + Yn)mod m ……………………(8)

In this case, the period will be quite long if the period lengths of (Xn) and (Yn) are

relatively prime to each other.

Algorithm M (Randomizing by shuffling):

Given methods for generating two sequences (Xn) and (Yn), this algorithm will

successively output the terms of a "considerably more random" sequence. We use an

auxiliary table V[0], V[l], . . . , V[k-1], where k is some number chosen for convenience,

usually in the neighborhood of 100. Initially, the V-table is filled with the first k values

of the X-sequence. MI. [Generate X,Y.] Set X and Y equal to the next members of the

sequences (Xn) and (Yn), respectively.

M2. [Extract j.] Set j  [kY/m], where m is the modulus used in the sequence (Yn); that

is, j is a random value, 0 ≤ j < k, determined by Y.

M3. [Exchange.] Output V[j] and then set V[j]  X.

As an example, assume that Algorithm M is applied to the following two sequences, with

k = 64:

X0 = 5772156649, Xn+1 = (3141592653Xn + 2718281829) mod 235 ;

Y0 = 1781072418, Yn+1 = (2718281829Yn + 3141592653) mod 235 .

On intuitive grounds it appears safe to predict that the sequence obtained by applying

Algorithm M will satisfy virtually anyone's requirements for randomness in a computer-

generated sequence, because the relationship between nearby terms of the output has

been almost entirely obliterated. Furthermore, the time required to generate this sequence

is only slightly more than twice as long as it takes to generate the sequence (Xn) alone.

However, there is an even better way to shuffle the elements of a sequence, discovered by

Carter Bays and S. D. Durham [ACM Trans. Math. Software 2 (1976), 59-64]. Their

approach, although it appears to be superficially similar to Algorithm M, can give

surprisingly better performance even though it requires only one input sequence (Xn)

instead of two:

27

Algorithm B (Randomizing by shuffling):

Given a method for generating a sequence (Xn), this algorithm will successively output

the terms of a "considerably more random" sequence, using an auxiliary table V[0],

V[l], . . . …, V[k – 1] as in Algorithm M. Initially the V-table is filled with the first k

values of the X-sequence, and an auxiliary variable Y is set equal to the (k + 1)st value.

B1. [Extract j.] Set j  [kY/rn], where m is the modulus used in the sequence (Xn); that

is, j is a random value, 0 ≤ j < k, determined by Y.

B2. [Exchange.] Set Y V[j], output Y, and then set V[j] to the next member of the

sequence (Xn).

28

 Chapter 3

 Problem Statement

Random number generation is the fundamental problem applicable in many real life

applications. The demand for random numbers in scientific applications is increasing.

However, the most widely used multiplicative, congruential random-number generators

with modulus 231 - 1 have a cycle length of about 2.1 x 109. Moreover, developing

portable and efficient generators with a larger modulus such as 261 - 1 is more difficult

than those with modulus 231 - 1. Linear congruential random-number generators with

Mersenne prime modulus and multipliers of the form a = ± 2𝑞𝑞 ±2𝑟𝑟 have been developed.

Their main advantage is the availability of a simple and fast implementation algorithm

for such multipliers. Disadvantage is generalizes the algorithm points out statistical

weaknesses of these multipliers when used in a straightforward manner as seen in

previous chapters.

After studying and comparing the existing algorithms some implements will be suggested

for combined multiple recursive random number generation as follows:

A class of combined multiple recursive random number generators constructed in a way

that each component runs fast and is easy to implement, while the combination enjoys

excellent structural properties as measured by the spectral test. Each component is a

linear recurrence of order k> 1, modulo a large prime number, and the coefficients are

either 0 or are of the form a = ± 2𝑞𝑞 or a =± 2𝑞𝑞 ± 2𝑟𝑟 . This allows a simple and very fast

implementation, because each modular multiplication by a power of 2 can be

implemented via a shift, plus a few additional operations for the modular reduction.

Select the parameters in terms of the performance of the combined generator in the

spectral test to provide a specific implementation.

29

Chapter 4

 Design and Implementation

4.1 Multiple Recursive Generators

The multiple recursive generator (MRG) generalizes the multiplicative linear

congruential generator from a multiple of the previous term to a linear combination of the

previous k terms. A multiple recursive generator (MRG) is defined by the linear

recurrence

 𝑥𝑥𝑛𝑛= (𝑎𝑎1 𝑥𝑥𝑛𝑛−1 +···+𝑎𝑎𝑘𝑘𝑥𝑥𝑛𝑛−𝑘𝑘) mod m; ……………………… (9)

 𝑢𝑢𝑛𝑛 = 𝑥𝑥𝑛𝑛 /m. ………………………………………………… (10)

The modulus m and the order k are positive integers, the coefficients 𝑎𝑎𝑖𝑖 belong to

ℤ𝑚𝑚 ={ 0, 1,...,m− 1}, and the state at step n is the vector 𝑥𝑥𝑛𝑛 = (𝑥𝑥𝑛𝑛−𝑘𝑘+1 ,..., 𝑥𝑥𝑛𝑛). The

maximal period length of the recurrence (1) is ρ = 𝑚𝑚𝑘𝑘 − 1 and this length is attained if

and only if m is prime and the characteristic polynomial of the recurrence,

 P(z)= 𝑧𝑧𝑘𝑘 −𝑎𝑎1 𝑧𝑧𝑘𝑘−1 −···−𝑎𝑎𝑘𝑘 ,

is a primitive polynomial modulo m. Primitive polynomials [32][33] can be found by

random search. To obtain a primitive polynomial, one needs at least 2 non- zero

coefficients 𝑎𝑎𝑖𝑖’s. This minimal number of non-zero coefficients yields the following

economical version of (9):

 𝑥𝑥𝑛𝑛 = (𝑎𝑎𝑟𝑟 𝑥𝑥𝑛𝑛−𝑟𝑟 + 𝑎𝑎𝑘𝑘 𝑥𝑥𝑛𝑛−𝑘𝑘) mod m………………………… (11)

The classical linear congruential generator (LCG) is obtained with k = 1. Further details

about MRGs can be found, e.g., in Knuth (1998), Niederreiter (1992), L’Ecuyer (1994),

L’Ecuyer (1996), and the references therein. Besides period length, two important issues

in the design of MRGs are the statistical quality and the efficiency of the implementation.

The statistical quality is traditionally assessed by measuring the uniformity of the set of

all vectors of successive output values (𝑢𝑢𝑛𝑛 ,..., 𝑢𝑢𝑛𝑛+𝑡𝑡−1), from all initial states, as we

explain in Section 4.4. For the implementation, the key issue is how to compute

efficiently the products 𝑎𝑎𝑖𝑖x mod m when m is large.

30

The mathematical properties of the multiple recursive generator resemble those of the

inversive congruential and feedback shift register generators, which we discuss after it.

An in-depth exploration of these properties is beyond the scope of this thesis. The

computation of a sequence using this generator takes about k times as long as with a

simple LCG, and requires about k times as much storage space, since at any point the

previous k terms must be stored. Thus we see that although a larger k value increases the

period by a factor of m, it also increases computation time and storage space linearly.

One way to increase computational efficiency is to set all multipliers to ±1 or 0, as

suggested by Watson in 1962 [28]. A particularly good generator of this form is 𝑥𝑥𝑛𝑛 =

𝑥𝑥𝑛𝑛−24 + 𝑥𝑥𝑛𝑛−55 mod m, with the restriction that the initial values must not all be even

(Knuth 1997 [14]). The least significant bit in the generated sequence has period 255 − 1,

so the generator will have at least this period for any value of m. Furthermore, it has a

period of 2𝑘𝑘−1 (255 − 1) if m = 2𝑘𝑘 . Since this generator doesn’t require any

multiplication, it is faster even than the simple LCG, and has a much longer period. Deng

and Lin in 2000 [2] proposed a slightly different way to achieve efficiency with the MRG.

They recommend a so-called Fast MRG of the form 𝑥𝑥𝑛𝑛 = b𝑥𝑥𝑛𝑛−𝑘𝑘 − 𝑥𝑥𝑛𝑛−1 mod m for some

k, where the multiplier b is chosen such that the generator has full period. This generator

eliminates the tradeoff of high computation time, but maintains the long period afforded

by keeping track of k previous values.

4.1.1 Feedback Shift Register Generators

The feedback shift register generator (FSRG), which is a special form of the multiple

recursive generator with modulus 2, was introduced by Tausworthe in 1965 [27]. It has

the form

 𝑥𝑥𝑛𝑛= (𝑎𝑎1 𝑥𝑥𝑛𝑛−1 +···+𝑎𝑎𝑘𝑘𝑥𝑥𝑛𝑛−𝑘𝑘) mod 2.

It generates individual bits, 0 or 1, based on the preceding k bits. The multipliers 𝑎𝑎𝑖𝑖 are

either 0 or 1, since any other value is equivalent to one of these mod 2. To begin

generation, k seed bits are required. As shown in Theorem 2.2.2.1 and Corollary 2.2.2.1,

the upper bound on the period of an FSRG is 2𝑘𝑘 because the entire sequence repeats as

soon as a k-tuple repeats. However, in an FSRG, the k-tuple consisting of all zeros results

in the remainder of the sequence being all zeroes, so a usable FSRG must not produce

this k-tuple. Therefore the maximal period for an FSRG is actually 2𝑘𝑘−1 (Gentle 2003

31

[11]). Addition mod 2 is equivalent to the exclusive-or operation, which is very efficient

on a computer. To increase efficiency further, it is common to set all coefficients to zero

except for two, as with MRGs. The generator then takes the form 𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛−𝑝𝑝 + 𝑥𝑥𝑛𝑛−𝑘𝑘 mod

2, and is called a two-tap generator. In general, a generator with N non-zero coefficients

is called an N-tap generator. The generator is named for the fact that it can be

implemented efficiently using a single register and the shift operation, as illustrated in the

following diagram. In each time step, the bits shift down the register according to the

arrows, and a new bit is calculated and pushed onto the end.

 Figure 4.1: Feedback Shift Register Generators

This diagram illustrates the generator 𝑥𝑥𝑛𝑛 = 𝑥𝑥𝑛𝑛−1 + 𝑥𝑥𝑛𝑛−4 mod 2 with seed values (1,0,1,0),

which produces the sequence listed below. This generator achieves its maximal period,

24 − 1 = 15, and starts repeating with 𝑥𝑥4 = 𝑥𝑥19, 𝑥𝑥5 = 𝑥𝑥20, etc.

N 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

𝑥𝑥𝑛𝑛 1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 0

 Table 4.1: Generate the binary numbers using FSRG

The conditions for coefficients that produce a maximal period involve finding primitive

polynomials in ℤ2; see Lidl and Niederreiter [17] and Golomb [12] for an extensive

discussion of FSRGs and their properties. For our purposes, it suffices to say that the

conditions are restrictive, but not difficult to meet. Where other random number

generators generate sequences of integers in ℤ𝑚𝑚 for some large m, the feedback shift

32

register generator has m = 2, and produces a sequence of bits. In the following sections,

we discuss several methods of using this bit sequence to generate larger integers like the

other generators we have discussed.

Implementation:

A first approach for computing ax mod m is approximate factoring [34][43]. It uses

integer arithmetic and a clever decomposition of m. It works if 𝑎𝑎2 < m or if a = m/i where

𝑎𝑎2 < m, and if all integers between −m and m are well represented on the computer.

A second approach computes the product and the division by m (for the mod operation)

directly in floating-point arithmetic. On computers that obey the IEEE 64-bit floating

point standard (most computers do), all integers up to 253 are represented exactly in

floating point, and the floating-point implementation works if am < 253 . See L’Ecuyer

(1999a) for details and examples.

A third approach, introduced by Wu (1997) and generalized by L’Ecuyer and Simard

(1999), which we call the powers-of-2 decomposition, assumes that a is a sum or a

difference of a small number of powers of 2, e.g. a =± 2𝑞𝑞 ± 2𝑟𝑟 . The product of x by each

power of 2 can be implemented by a left shift of the binary representation of x, and the

product ax is computed by adding and/or subtracting. The details are given in Section 3.

This approach turns out to be more efficient than the other two, according to our

experiments. Note that replacing any 𝑎𝑎𝑖𝑖 by 𝑎𝑎𝑖𝑖 ± m changes nothing to the recurrence (9).

If for some 𝑎𝑎𝑖𝑖 ∈ ℤ𝑚𝑚 , |𝑎𝑎𝑖𝑖 − m| satisfies one of the above conditions whereas 𝑎𝑎𝑖𝑖 does not

satisfy that condition, then one can replace 𝑎𝑎𝑖𝑖 by ã𝑖𝑖 = 𝑎𝑎𝑖𝑖 − m when implementing (9).

This is equivalent to allowing negatives values for the𝑎𝑎𝑖𝑖’s, which we shall do in the

remainder of this paper.

4.2 Combined MRGs

A direct efficient implementation of the recurrence (9) can generally be obtained only

when the number of non-zero coefficients 𝑎𝑎𝑖𝑖 is small, and when special conditions are

imposed on these coefficients, as explained in the previous subsection. However,

imposing these constraints usually implies that the resulting MRG has a poor lattice

structure [5]. In particular, good behavior is possible only if the sum of squares of the 𝑎𝑎𝑖𝑖

is large [5]. This has motivated the introduction of combined MRGs, which are

33

constructed so that the components are easy to implement efficiently while the structure

of the resulting combined generator has good quality. L’Ecuyer has proposed and

analyzed the following class of combined MRGs, based on J linear recurrences, with the

same order k and distinct prime moduli m j, running in parallel. For 1 ≤ j ≤ J , let

 𝑥𝑥𝑗𝑗 ,𝑛𝑛 = (𝑎𝑎𝑗𝑗 ,1 𝑥𝑥𝑗𝑗 ,𝑛𝑛−1 +···+𝑎𝑎𝑗𝑗 ,𝑘𝑘 𝑥𝑥𝑗𝑗 ,𝑛𝑛−𝑘𝑘) mod 𝑚𝑚𝑗𝑗 ……………. (11)

and suppose that the recurrence (1.3) has period 𝜌𝜌𝑗𝑗 = 𝑚𝑚𝑗𝑗
𝑘𝑘 − 1. Suppose also that the least

common multiple of 𝜌𝜌1 ,..., 𝜌𝜌𝐽𝐽 is ρ = 𝜌𝜌1 ···𝜌𝜌𝐽𝐽 /2𝐽𝐽−1 . (This is the best that one can do,

because each ρ j is necessarily even.)

Define the two combinations

 𝑧𝑧𝑛𝑛 = (∑ 𝛿𝛿𝑗𝑗𝑥𝑥𝑗𝑗 ,𝑛𝑛
𝐽𝐽
𝑗𝑗=1) mod 𝑚𝑚1 ; 𝑢𝑢𝑛𝑛 = 𝑧𝑧𝑛𝑛 /𝑚𝑚1 ……………. (11)

 and

 𝑤𝑤𝑛𝑛 = �∑ 𝛿𝛿𝑗𝑗 𝑥𝑥𝑗𝑗 ,𝑛𝑛

𝑚𝑚𝑗𝑗

𝐽𝐽
𝑗𝑗=1 � mod 1 ……………………… (11)

where the 𝛿𝛿𝑗𝑗 ’s are integers such that 𝛿𝛿𝑗𝑗 is relatively prime with 𝑥𝑥𝑗𝑗 for each j . L’Ecuyer

(1996) has shown that the sequence {𝑤𝑤𝑛𝑛 ,n ≥ 0} defined by (4.2) is the same as the

sequence {𝑢𝑢𝑛𝑛 ,n≥ 0} produced by the MRG (1–2), with m = 𝑚𝑚1 ···𝑚𝑚𝐽𝐽 , and explains how

to compute the corresponding 𝑎𝑎𝑖𝑖’s. Moreover, the numbers 𝑢𝑢𝑛𝑛 and 𝑤𝑤𝑛𝑛 produced by (4.2)

and (4.2), respectively, differ only by a very small quantity when the 𝑚𝑚𝑗𝑗 are close to each

other. Explicit bounds on the difference are given in L’Ecuyer (1996). The generators

considered in this paper are combined MRGs of this form, constructed so that the

structure of the combined MRG has excellent quality while (4.2) can be implemented

efficiently for each j. This was already achieved by L’Ecuyer [1] for implementations

based on approximate factoring and on floating point arithmetic, respectively. The aim of

this paper is to propose combined MRGs that are faster for an equivalent statistical

quality, by using the powers-of-2 decomposition method.

4.3 Overview of the Remainder

The remainder of the paper is organized as follows. In Section 4.4, we recall the quality

criteria for selecting MRGs based on an analysis of their lattice structure by the spectral

test. In Section 4.4.1, we describe the implementation method for coefficients that are a

sum or a difference of a small number of powers of 2. In Section 4.5, we explain how we

34

searched for good single and combined MRGs with coefficients of this form, and why we

prefer the combined MRGs over the non-combined ones. In Section 4.5.1, we give a

specific implementation of a combined MRG of this form and we compare its speed with

other combined MRGs proposed in L’Ecuyer, and implemented via approximate factoring

and floating point arithmetic.

4.4 Lattice Structure and Quality Criteria

Let

 Ψ𝑡𝑡 ={(𝑢𝑢0 ,..., 𝑢𝑢𝑡𝑡−1) : (𝑥𝑥0 ,..., 𝑥𝑥𝑘𝑘−1) ∈ ℤ𝑚𝑚𝑘𝑘 }, ……………….(11)

the set of all vectors of t successive output values of the MRG, from all possible initial

states. If the initial seed of the MRG is chosen at random, this Ψ𝑡𝑡 is viewed in a sense as

the sample space from which points are chosen at random to approximate the uniform

distribution over the t-dimensional unit hypercube [0, 1)𝑡𝑡 . This means that the generator

should be constructed so that Ψ𝑡𝑡 covers [0, 1)𝑡𝑡 very evenly, for t up to some arbitrary

number. It is well known that the set ً t for an MRG is equal to the intersection of a lattice

L𝑡𝑡 with the unit hypercube [0, 1)𝑡𝑡 [5]. This implies that Ψ𝑡𝑡 lies on a limited number of

equidistant parallel hyperplanes, at a distance d𝑡𝑡 apart, where 1/d𝑡𝑡 turns out to be equal

to the Euclidean length of the shortest nonzero vector in the dual lattice of L𝑡𝑡 , defined as

the set of vectors in ℝ𝑡𝑡 whose scalar product by any vector of L𝑡𝑡 is an integer.

Computing d𝑡𝑡 is called the spectral test [14]. For Ψ𝑡𝑡 to be evenly distributed over [0, 1)𝑡𝑡 ,

we want d𝑡𝑡 to be small. Here, we use the same figure of merit as in L’Ecuyer (1999a),

namely

 Mt1 = min𝑡𝑡≤t1 𝑑𝑑𝑡𝑡∗(𝑚𝑚𝑘𝑘)/ d𝑡𝑡 ,

 where t1 > k is a selected constant (the maximal dimension that is considered) and

𝑑𝑑𝑡𝑡∗ (𝑚𝑚𝑘𝑘) = 1/(ρ𝑡𝑡𝑚𝑚𝑘𝑘/𝑡𝑡) is an absolute lower bound on d t, for given k and t . For t ≤ 8, we

take ρ𝑡𝑡 as the value of γ𝑡𝑡 defined in Knuth, page 109, whereas for t > 8, we take

ρ𝑡𝑡 = exp[R(t)/t] where R(t) is the bound of Rogers on the density of sphere packing

[35][21]. This Mt1 is always between 0 and 1 and we want it to be as large as possible.

We recall that a general upper bound on 1/𝑑𝑑𝑡𝑡2 is given by

 1/𝑑𝑑𝑡𝑡2 ≤ 1 + ∑ 𝑑𝑑𝑡𝑡2𝑘𝑘
𝑖𝑖=1 ,

35

which means that a necessary condition for good quality is that the sum of squares of the

coefficients must be large.

4.4.1 Implementation by the powers of 2- decomposition method

We want to compute

 y = 2𝑞𝑞 x mod m ……………………………….. (11)

where 0 < x < m. We decompose m and x as m = 2𝑒𝑒 − h and x = 𝑥𝑥0 + 2𝑒𝑒−𝑞𝑞𝑥𝑥1 , where

h> 0, 𝑥𝑥0 = x mod 2𝑒𝑒−𝑞𝑞 , and 𝑥𝑥1 == x/ 2𝑒𝑒−𝑞𝑞 . We then have

 y = 2𝑞𝑞 (𝑥𝑥0 + 2𝑒𝑒−𝑞𝑞 𝑥𝑥1) mod (2𝑒𝑒 − h)

 = (2𝑞𝑞𝑥𝑥0 + h𝑥𝑥1) mod (2𝑒𝑒 − h)

We assume that the following inequalities hold:

 h < 2𝑞𝑞 and h(2𝑞𝑞 − (h + 1) 2−𝑒𝑒+𝑞𝑞) < m.

Under these conditions, each of the two terms 2𝑞𝑞𝑥𝑥0 and h𝑥𝑥1 in (11) is less that m, and y

can be computed as follows [10]: Shift the binary representation of 𝑥𝑥0 by q positions to

the left to obtain 2𝑞𝑞 𝑥𝑥0 , add h times 𝑥𝑥0, and subtract m if the result exceeds m− 1. This

can be implemented using unsigned integers and the intermediate results will never

exceed 2m − 1. The procedure requires a single mu ltiplication, between h and 𝑥𝑥1. To

multiply x by a =± 2𝑞𝑞 ± 2𝑟𝑟 modulo m, repeat the procedure with r instead of q, and add

(or subtract) the results modulo m. and it is implemented in C. Note that if q = 0 in (11),

nothing needs to be done (y = x), whereas if q = 1, one can simply add x + x, and subtract

m if the result exceeds m − 1. We will exploit these special cases when we will select the

parameters of our combined MRGs.

Wu [9] introduced this method for the special case where h = 1. In this case, one obtains

y = 2𝑞𝑞 𝑥𝑥0 + 𝑥𝑥1 , which means that the binary representation of y is obtained simply by

exchanging the blocks of bits 𝑥𝑥0 and 𝑥𝑥1 in the binary representation of x , i.e., rotating the

bits by q positions. This simple rotation does not change the bits of x very much. The

Hamming weights of x and of ax mod m (i.e., the number of 1’s in their respective binary

representations) tend to be strongly dependent when m and a have the form m = 2𝑒𝑒 − 1

and a =± 2𝑞𝑞 ± 2𝑟𝑟 . For k = 1 (i.e., LCGs), they showed that this dependence also appears

between the number of 1’s in the binary representations of two successive output values

𝑢𝑢𝑛𝑛−1 and of 𝑢𝑢𝑛𝑛 , and they proposed a simple statistical test to detect it. The specific LCGs

36

proposed by Wu fail this independence test decisively, whereas LCGs whose multipliers

have a more complicated binary representation typically pass this test. LCGs with

multipliers of the form a =± 2𝑞𝑞 ±2𝑟𝑟 have in fact been proposed and used a long time ago:

The infamous RANDU generator [36] has indeed a = 216 + 2+ 1 and m = 232 . These

parameters were selected for the ease of implementation, but led to important deficiencies

in the generator’s structure.

4.5 Search for good parameters

We performed computer searches to find good single and combined MRGs that can be

implemented via the powers- of-2 decomposition method. The first search was for MRGs

of order k = 6, with modulus m = 231− 1. With this m, we have h = 1 and we thus avoid

the multiplication by h: We are back to the special case considered by Wu. We imposed

the condition that each coefficient 𝑎𝑎𝑖𝑖 had to be of the form

 a =± 2𝑞𝑞± 1, or a =± 2𝑞𝑞 , or a = 0. ……….. (11)

Even with these conditions, an exhaustive search would be too long, so we made a

random search. Almost all of the generators that we examined and that satisfied these

conditions had a very bad lattice structure in dimension 7, 8 or 9. These generators

typically had a good behavior in higher dimensions. The best generator that we found,

based on the criterion 𝑀𝑀16 , has 𝑀𝑀16 = 0.25012. This is not very good. Its coefficients are

𝑎𝑎1 = 215 , 𝑎𝑎2 = 0, 𝑎𝑎3 =− 29 + 1, 𝑎𝑎4 = 220 − 1, 𝑎𝑎5 =− 26 − 1, and 𝑎𝑎6 = 226 − 1. We call it

MRG31k6s. It has 5 non-trivial powers of two in its coefficients, so it can be compared to

MRG31k3p, to be presented in the next section, in terms of the number of multiplications

by powers of two. We cannot recommend it, however, because its lattice structure is

relatively poor and, perhaps more importantly, because the small number of powers of 2

in the coefficients means (intuitively) that there is not much mixing of the bits, similar to,

e.g., the generator of Wu.

In our second search, with the same k and m, we allowed coefficients with more non-

trivial powers of 2. The condition on the coefficients was that they had to be of the form

a =± 2𝑞𝑞 ± 2𝑟𝑟 . MRGs with good lattice structures were much easier to find under these

relaxed conditions. The best generator that we found, based on 𝑀𝑀16 , has 𝑀𝑀16 = 𝑀𝑀48 = 0.

59149. We call it MRG31k6l. Its coefficients are 𝑎𝑎1 = 223 + 216 , 𝑎𝑎2 = 219 − 212 ,

37

𝑎𝑎3 = 227 + 215 , 𝑎𝑎4 =− 210 − 27, 𝑎𝑎5 =− 24 − 1, and 𝑎𝑎6 = 227 + 216 . Of course, this

generator will be slower than MRG31k3s, because there is more multiplications by

powers of 2 to perform. We will compare their speeds at the end of the next section. Our

third search was for combined MRGs with 2 components of order k = 3, with moduli

𝑚𝑚1 = 231 − 1 and 𝑚𝑚2 = 231− 21069, and with some coefficients equal to zero and the

others of the form ±2𝑞𝑞 or ±2𝑞𝑞 ± 1. We performed a random search. For each coefficient

of each component, we specified the desired form: either 0, or ±2𝑞𝑞 ,or ±2𝑞𝑞 ± 1. Each

coefficient received randomly between 1 to 10 possible values, depending on the

specified form. We retained only the coefficients, for which the inequalities (11) were

satisfied, and only the recurrences (or characteristic polynomials) that satisfied the

maximal period conditions. We then examined all the possible combinations of one MRG

component of each type, among those retained, to find out which combined generator

performed best on spectral test. These combined MRG have approximatively the same

period length as the MRGs of order 6 in our first two searches. The best combined MRG

that we found, MRG31k3p, is described in the next section.

4.5.1 A specific generator and some timing

In our third search, we found the following combined MRG with J = 2 components of

order k = 3, whose lattice structure is good at least up to 48 dimensions, with M48

 𝑚𝑚1 = 231 − 1 = 2147483647

 =

0.60159. The two components are defined by the parameters

 𝑎𝑎11 = 0

 𝑎𝑎12 = 222

 𝑎𝑎13 = 27 + 1

 𝑚𝑚2 = 231 − 21069 = 2147462579

 𝑎𝑎21 = 215

 𝑎𝑎22 = 0

 𝑎𝑎23 = 215 + 1.

Thus, each component has only 2 nonzero coefficients, one of them of the form 𝑎𝑎𝑖𝑖𝑖𝑖 = 2𝑞𝑞

and the other one of the form 𝑎𝑎𝑖𝑖𝑖𝑖 = 2𝑞𝑞 + 1. This will simplify the implementation. The

combination (4.2) is exactly equivalent to an MRG of order 3 with parameters

38

 m = 4611640770946945613

 𝑎𝑎1 = 4341088847531259234

 𝑎𝑎2 = 2349160800583431525

 𝑎𝑎3 = 3927818590467337243.

Figure 4.2: Implementation of CMRG the Powers-of-2 Decomposition method

y1 = (((s11 & mask12) << 22) + (s11 >> 9)) + (((s12 & mask13) << 7) + (s12 >> 24));

if (y1 > m1) then y1 -= m1;

 y1+= s12;

if (y1 > m1) then y1 -= m1;

s12 = s11; s11 = s10; s10 = y1; /* Second component */

y1 = ((s20 & mask21) << 15) + 21069 * (s20 >> 16);

if (y1 > m2) then y1 -= m2;

y2 = ((s22 & mask21) << 15) + 21069 * (s22 >> 16);

if (y2 > m2) then y2 -= m2;

y2 += s22;

if (y2 > m2) then y2 -= m2;

y2 += y1;

if (y2 > m2) then y2 -= m2;

s22 = s21; s21 = s20; s20 = y2; /* Combination */

if (s10 <= s20) then return ((s10 - s20 + m1) * norm);

39

This generators has 2 distinct cycles of length ρ = 𝑚𝑚1𝑚𝑚2 / 2 ≈ 2185 . Figure 4.2 gives an

implementation of this generator in the C language. In this code, the bit masks mask* are

used to separate the bits of the 𝑠𝑠𝑗𝑗 ,𝑖𝑖’s in 2 blocks as explained in Section 4.4.1. For

example, mask12 contains 23 zeros followed by 9 ones. So, in the first line of the code

for the first component, the statement

 ((s11 & mask12) << 22) + (s11 >> 9)

extracts the 9 least significant bits of x11, shifts them to the left by 22 positions, and adds

this to s11 shifted to the right by 9 positions. The result is the product of s11 by

𝑎𝑎12 = 222 , modulo 𝑚𝑚1 = 231 − 1. The other products are implemented in a similar way.

The several instructions of the form

 if (y2 > m2) y2 -= m2;

are necessary to avoid overflow. Indeed, since the terms added are between 0 and 231− 1

and since unsigned integers cannot exceed 232 − 1, we cannot safely add more than 2

terms at a time without reducing the sum modulo 𝑎𝑎𝑗𝑗 .

To have an idea of the speed improvement of this new generator over the previous

combined MRG implementations, for each generator we generated 10 million (107)

random numbers and added them up, looked at how much CPU time it took (user time +

system time), and printed the sum (this may be convenient for checking correctness of an

implementation). In all cases, each integer in the seed was 12345.

40

 Chapter 5

 Results

These figures have been shown the timing for corresponding any arbitrary numbers. The

timings for the C++ compilers are practically identical to those with the corresponding C

compiler.

 Figure 5.1(a): Resulting time for integers

 Figure 5.1(b): Time resulting for long numbers

41

The period length is indicated, the type of implementation (AF for approximate factoring,

FP for floating-point, and P2D for powers-of-2 decomposition), and the sum of the 107

numbers generated. The generator MRG31k3p is that of Figure 4.2, MRG31k6s and

MRG31k6l were introduced in the previous section, MRG32k3a is the combined MRG

proposed and combMRG96b is a variant of combMRG96a with the moduli and

multipliers defined as constants in the code instead of variables as in combMRG96a.

Aside from MRG31k3s, which we discard because of its poor performance in the spectral

test. This illustrates the fact that speed comparisons depend heavily on compilers and

machine architecture. The generator of figure 4.2 gives only 31 bits of precision even

though it returns 53-bit floating-point numbers. If more precision is desired, one can

combine two successive numbers produced by the generator to construct each output

value. For example, if MRG31k3p outputs the sequence 𝑢𝑢1 , 𝑢𝑢2 ,..., one can use the

sequence 𝑣𝑣1 , 𝑣𝑣2 ,.. of pseudo random numbers defined by 𝑣𝑣𝑖𝑖 = (ν𝑢𝑢2𝑖𝑖 + 𝑢𝑢2𝑖𝑖−1) mod 1 for

some constant ν between 2−21 and 2−32 .

42

Chapter 6

 Conclusion & Future Scope

6.1 Conclusion:

Combined MRGs with multipliers of the form ± 2𝑞𝑞 ± 2𝑟𝑟 are the fastest good-quality

MRGs available to date, when comparing generators having approximatively the same

period length. These combined MRG possess good theatrical properties in terms of their

period length and the quality of their lattice structure, and behave well in empirical

statistical tests.

6.2 Future Scope:

In the future, to search for good generators of this form by applying the spectral test not

only to the vectors of successive output values produced by the generator (as usual), but

to certain vectors of non-successive output values as well, as suggested by L’Ecuyer and

Lemieux in the context of selecting lattice rules for quasi-Monte Carlo integration. These

combined MRGs could also be combined with small, efficient, nonlinear generators to

destroy the (linear) lattice structure and we intend to analyze such combinations.

43

 References

[1] L’Ecuyer P. 1996. “Combined multiple recursive random number generators,

Operations Research”, 44(5):816– 822.

[2] Deng, Lih-Yuan, and Dennis K.J. Lin. “Random Number Generation for the New

Century”. The American Statistician, May 2000, Vol. 54, No. 2. pp. 145-150.

[3] L’Ecuyer P. and C. Lemieux, “Variance reduction via lattice rules”, Management

Science 2000.

[4] Niederreiter H, “Random number generation and quasi-monte carlo methods”,

Volume 63 of SIAM CBMS- NSF Regional Conference Series in Applied Mathematics.

Philadelphia: SIAM 1999.

[5] L’Ecuyer P. and R. Couture. “An implementation of the lattice and spectral tests for

multiple recursive linear random number generators”. INFORMS Journal on

Computing1997, 9(2):206–217.

[6] Eichenauer-Herrmann, Jurgen, “Inversive Congruential Pseudorandom Numbers: a

Tutorial”, International Statistical Review, August 1992, Vol. 60, No. 2. pp. 167-176.

[7] L’Ecuyer P. and S. Cote, “Implementing a random number package with splitting

facilities”. ACM Transactions on Mathematical Software1991, 17(1):98–111.

[8] Fischer, Viktor, and Milos Drutarovsky “True Random Number Generator Embedded

in Reconfigurable Hardware ”. Proceedings of the Cryptographic Hardware and

Embedded Systems Workshop, 2002, pp. 415-430.

[9] Wu, P.-C “Multiplicative, congruential random number generators with multiplier

±2𝑘𝑘1 ± 2𝑘𝑘2 and modulus 2p-1”, ACM Transactions on mathematical Software1997,

23(2):255-265.

44

[10] L’Ecuyer P. and R. Simard, “Beware of linear congruential generators with

multipliers of the form a =± 2𝑞𝑞 ± 2𝑟𝑟”, ACM Transactions on Mathematical Software,

1999, 25(3):367–374.

[11] Gentle, James Z, “Random number generation and Monte Carlo methods”, Springer,

New York, 2003.

[12] Golomb, Solomon W, “Shift Register Sequences” Aegean Park Press, 1982.

[13] L’Ecuyer P, F Blouin, and R Couture, “A search for good multiple recursive random

number generators”, ACM Transactions on Modeling and Computer Simulation, 1993,

3(2):87–98.

[14] Knuth, Donald E, “The Art of Computer Programming, Volume 2: Seminumerical

Algorithms (second edition)”, Addison Wesley, 1997.

[15] Lehmer D.H, “Mathematical methods in large-scale computing units. Proceedings of

the Second Symposium on Large Scale Digital Computing Machinery”, pages 141-146,

Harvard University Press, 1951.

[16] Lewis T.G., and Payne, W.H, “Generalize Feedback Shift Register Pseudorandom

Number Algorithm”, Journal of the ACM, July 1973, Vol. 20, No. 3. pp. 456-468.

[17] Lidl, Rudolf and Harald Niederreiter, “Finite fields ”, Cambridge University Press,

Cambridge, 1997.

[18] Random Number Generators web page

http://www.math.utah.edu/~pa/Random/Random.html

[19] Quasi-Random Number web page http://www.taygeta.com/rwalks/node3.html

[20] L’Ecuyer, P, ”Bad lattice structures for vectors of non- successive values produced

by some linear recurrences”, INFORMS Journal on Computing, 1997, 9(1):57–60.

[21] L’Ecuyer, P, “Tables of linear congruential generators of different sizes and good

lattice structure”, Mathematics of Computation, 1999b, 68(225):249–260.

45

[22] Metcalfe, Andrew V, “Statistics in management science”, Arnold, London, 2000.

[23] Morgan, Byron J.T, “Elements of Simulation”, Chapman and Hall, New York, 1984.

[24] NIST, “A Statistical Test Suite for Random and Pseudorandom Number Generators

for Cryptographic Applications”, NIST Special Publication 800-22, National Institute for

Standards and Technology, 2000.

[25] Schumer, Peter D, “Introduction to Number Theory”, PWS Publishing Company,

Boston, 1996.

[26] Talamba, Sorin, “A Theoretical and Empirical Study of Uniform Pseudo-Random

Number Generators”, Middlebury College Thesis, Department of Computer Science,

2001.

[27] Tausworthe, Robert C, “Random Numbers Generated by Linear Recurrence Modulo

Two”, Mathematics of Computation, April 1965, Vol. 19, No. 90. pp. 201-209.

[28] Watson, E.J, “Primitive Polynomials (mod 2)”, Mathematics of Computation, July

1962, Vol. 16, No. 79. pp. 368-369.

[29] Wichman, B.A and I.D. Hill, “Algorithm AS 183: An Efficient and Portable Pseudo-

Random Number Generator”, Applied Statistics, 1982, Vol. 31, No. 2. pp. 188-190.

[30] Zeisl, H, “A Remark on Algorithm AS 183: An Efficient and Portable Pseudo-

Random Number Generator”, Applied Statistics, 1986, Vol. 35, No. 1. p. 89.

[31] R. Panneerselvam, “Design and Analysis of Algorithms”, pp. 280-283.

[32] L’Ecuyer, P, “Good parameters and implementations for combined multiple

recursive random number generators”, Operations Research, 1999a, 47(1):159–164.

[33] L’Ecuyer, P and R. Couture, ”An implementation of the lattice and spectral tests for

multiple recursive linear random number generators”, INFORMS Journal on Computing,

1997, 9(2):206–217.

46

[34] Bratley, P., B. L. Fox, and L. E. Schrage, ”A guide to simulation”, Second Ed, New

York: Springer-Verlag, 1987.

[35] Conway, J. H. and N. J. A. Sloane, “Sphere packing, lattices and groups”, 3rd ed,

Grundlehren der Mathematischen Wissenschaften 290, New York: Springer-Verlag, 1999.

[36] IBM, “System/360 scientific subroutine package”, Version III, Programmer’s

Manual, White Plains, New York, 1968.

[37] Law, A. M and W. D. Kelton, “Simulation modeling and analysis”, Third ed, New

York: McGraw-Hill, 2000.

[38] L’Ecuyer, P, “Uniform random number generation”, Annals of Operations Research,

1994, 53:77–120.

47

List of Publications

Communicated:
Prasada Rao Gurubill, Dr. Deepak Garg “Better technique of random number

generation”, National Conference on Emerging Trends in Engineering and Sciences

(NCETES-2010).

	aTitle page
	Master of Engineering

	Binder1
	img122
	img121
	Table
	1.2 Transformation of the original sequence……………………………………………2
	1.3 What makes a good random number generator? ……………………………………2

	Thesis
	1.2 Transformation of the original sequence
	What makes a good random number generator?

