
1 
 

                                                                                   CHAPTER 1     

                                                                          INTRODUCTION                                                                                                                 

 

1.1 Introduction 

The most important among a variety of topics that relate to computation are algorithm 

validation, complexity estimation and optimization. Wide part of theoretical computer 

science deals with these tasks. Complexity of tasks in general is examined studying the 

most relevant computational resources like execution time and space. The ranging of 

problems that are solvable with a given limited amount of time and space into well-

defined classes is a very intricate task, but it can help incredibly to save time and money 

spent on the algorithms design. Vast collections of papers were dedicated to algorithm 

development. A short historical overview of the fundamental issues in theory of 

computation can be found in [1]. We do not discuss precise definition of algorithm and 

complexity. The interested reader can apply for the information to one of the 

fundamental books on theory of algorithms, e.g. [2], [3]. 

Modern problems tend to be very intricate and relate to analysis of large data sets. Even 

if an exact algorithm can be developed its time or space complexity may turn out 

unacceptable. But in reality it is often sufficient to find an approximate or partial 

solution. Such admission extends the set of techniques to cope with the problem. We 

discuss heuristic algorithms which suggest some approximations to the solution of 

optimization problems. In such problems the objective is to find the optimal of all 

possible solutions that minimizes or maximizes an objective function. The objective 

function is a function used to evaluate a quality of the generated solution. Many real-

world issues are easily stated as optimization problems. The collection of all possible 

solutions for a given problem can be regarded as a search space, and optimization 

algorithms, in their turn, are often referred to as search algorithms. 

In computational complexity theory, the complexity class NP-complete (abbreviated 

NP-C or NPC, NP standing for Nondeterministic Polynomial time) is a class of 

problems having two properties: 

 Any given solution to the problem can be verified quickly (in polynomial time); 

the set of problems with this property is called NP.  



2 
 

 If the problem can be solved quickly (in polynomial time), then so can every 

problem in NP.  

Although any given solution to such a problem can be verified quickly, there is no 

known efficient way to locate a solution in the first place; indeed, the most notable 

characteristic of NP-complete problems is that no fast solution to them is known. That 

is, the time required to solve the problem using any currently known algorithm 

increases very quickly as the size of the problem grows. As a result, the time required to 

solve even moderately large versions of many of these problems easily reaches into the 

billions or trillions of years, using any amount of computing power available today. As 

a consequence, determining whether or not it is possible to solve these problems 

quickly is one of the principal unsolved problems in computer science today. 

While a method for computing the solutions to NP-complete problems using a 

reasonable amount of time remains undiscovered, computer scientists and programmers 

still frequently encounter NP-complete problems. An expert programmer should be able 

to recognize an NP-complete problem so that he or she does not unknowingly waste 

time trying to solve a problem which so far has eluded generations of computer 

scientists. Instead, NP-complete problems are often addressed by using approximation 

algorithms in practice. 

At present, all known algorithms for NP-complete problems require time that is 

superpolynomial in the input size, and it is unknown whether there are any faster 

algorithms. 

Algorithms are at the heart of problem solving in scientific computing and computer 

science. Unfortunately many of the combinatorial problems that arise in a 

computational context are NP-hard, so that optimal solutions are unlikely to be found in 

polynomial time. How can we cope with this intractability? One approach is to design 

algorithms that find approximate solutions guaranteed to be within some factor of the 

quality of the optimal solution. More recently, in large-scale scientific computing, even 

polynomial time algorithms that find exact solutions are deemed too expensive to be 

practical, and one needs faster (nearly linear time) approximation algorithms. We will 

consider the design of approximation algorithms for various graph-theoretical and 

combinatorial problems that commonly arise in scientific computing and computational 



3 
 

biology. These include set covers (vertex covers in hyper graphs), matching, coloring, 

and multiple sequence alignments in computational biology.  

The following techniques can be applied to solve computational problems in general, 

and they often give rise to substantially faster algorithms: 

 Approximation: Instead of searching for an optimal solution, search for an 

"almost" optimal one.  

 Randomization: Use randomness to get a faster average running time, and 

allow the algorithm to fail with some small probability. See Monte Carlo 

method.  

 Restriction: By restricting the structure of the input (e.g., to planar graphs), 

faster algorithms are usually possible.  

 Parameterization: Often there are fast algorithms if certain parameters of the 

input are fixed.  

 Heuristic: An algorithm that works "reasonably well" in many cases, but for 

which there is no proof that it is both always fast and always produces a good 

result. Metaheuristic approaches are often used.  

Approximate algorithms entail the interesting issue of quality estimation of the 

solutions they find. Taking into account that normally the optimal solution is unknown, 

this problem can be a real challenge involving strong mathematical analysis. In 

connection with the quality issue the goal of the heuristic algorithm is to find as good 

solution as possible for all instances of the problem. There are general heuristic 

strategies that are successfully applied to manifold problems.          

In computer science, a heuristic algorithm, or simply a heuristic, is an algorithm that is 

able to produce an acceptable solution to a problem in many practical scenarios, but for 

which there is no formal proof of its correctness. Alternatively, it may be correct, but 

may not be proven to produce an optimal solution, or to use reasonable resources. 

Heuristics are typically used when there is no known method to find an optimal 

solution, under the given constraints (of time, space etc.) or at all. 

Two fundamental goals in computer science are finding algorithms with provably good 

run times and with provably good or optimal solution quality. A heuristic is an 

algorithm that abandons one or both of these goals; for example, it usually finds pretty 

good solutions, but there is no proof the solutions could not get arbitrarily bad; or it 



4 
 

usually runs reasonably quickly, but there is no argument that this will always be the 

case. 

The term Heuristic is used for algorithms, which find solutions among all possible 

ones, but they do not guarantee that the best will be found; therefore they may be 

considered as approximate and not accurate algorithms. These algorithms, usually find 

a solution close to the best one and they find it fast and easily. Sometimes these 

algorithms can be accurate, that is they actually find the best solution, but the algorithm 

is still called heuristic until this best solution is proven to be the best. The method used 

from a heuristic algorithm is one of the known methods, such as greediness, but in order 

to be easy and fast the algorithm ignores or even suppresses some of the problem's 

demands. 

1.2 Organization of Thesis 

The thesis is organized as follows:  

Chapter-2 It presents some essential information about algorithms and computational 

complexity.  

Chapter-3 It Presents definitions of NP-problem and heuristics. Some intractable 

problems that could help to understand deeper importance of heuristics are also 

mentioned.  

Chapter-4 It presents problem statement that could analyses the problem statement that 

we are going deal. 

Chapter-5 It presents results & discussion. 

Finally, the last chapter is devoted to the conclusion. 

 

 

 

                                                                               

                                                                                   

 

 

 

 



5 
 

                                                                                 CHAPTER 2       

                                       ALGORITHMS AND COMPLEXITY 

 

2.1 Introduction to Algorithms 

Classes of time complexity are defined to distinguish problems according to their 

―hardness‖[4].  

Class P consists of all those problems that can be solved on a deterministic Turing 

machine in polynomial time from the size of the input. Turing machines are an 

abstraction that is used to formalize the notion of algorithm and computational 

complexity.  

Class NP consists of all those problems whose solution can be found in polynomial 

time on a non-deterministic Turing machine. Since such a machine does not exist, 

practically it means that an exponential algorithm can be written for an NP problem, 

nothing is asserted whether a polynomial algorithm exists or not.  

A subclass of NP, class NP-complete includes problems such that a polynomial 

algorithm for one of them could be transformed to polynomial algorithms for solving all 

other NP problems. Finally, the class NP-hard can be understood as the class of 

problems that are NP-complete or harder. NP-hard problems have the same trait as NP-

complete problems but they do not necessary belong to class NP, that is class NP-hard 

includes also problems for which no algorithms at all can be provided. 

In order to justify application of some heuristic algorithm we prove that the problem 

belongs to the classes NP-complete or NP-hard. Most likely there are no polynomial 

algorithms to solve such problems; therefore, for sufficiently great inputs heuristics are 

developed. 

2.2 Complexity Classes 

Almost all the algorithms we have studied thus far have been polynomial-time 

algorithms. On inputs of size n, their worst–case running time is 0(n
k
) for some 

constant k. It is natural to wonder whether all problems can be solved in polynomial-

time. The answer is No.         


