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Abstract 

 

Sorting is one of the most fundamental computational problems, and it is known that 

n keys can be sorted in 𝑂(𝑛 𝑙𝑜𝑔 𝑛) time by any of a number of well-known sorting 

algorithms.  Research done in the area of integer sorting has considerably improved 

the lower bound and achieved with comparison sorting i.e. 𝑂 𝑛 𝑙𝑜𝑔 𝑛  to 

𝑂  𝑛 log log 𝑛  [1] for a deterministic algorithms or to 𝑂 𝑛  for a radix sort 

algorithm in space that depends only on the number of input integers. Andersson et al. 

[2] presented signature sort in the expected linear time and space which gives very 

bad performance than traditional quick sort. It is well known that 𝑛 integers in the 

range [1, 𝑛c
] can be sorted in 𝑂 𝑛  time using radix sorting. Integers in any range 

[1,𝑈] can be sorted in 𝑂  𝑛 log log 𝑛  time [1]. However, these algorithms use 𝑂 𝑛  

words of extra memory.  

In this thesis, the intent is to present a simple and stable variant of signature sort for 

integer sorting, which works in 𝑂 𝑛  time and uses only 𝑂 1  words of extra 

memory. Also to improve the performance of the signature sort by implementing 

differently and comparing its performance against traditional sorting algorithms and 

to see the effect of register size on the algorithm. 
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Chapter-1 

Introduction 

 

Searching and Sorting, are one of the most important and frequent operations that are 

faced in many computer applications. That‟s why researchers have attempted umpteen 

times in past and still working on it, to develop more optimized and efficient 

algorithms. The efforts for making algorithms optimized, belongs to the area of time 

complexity as well as space complexity, by reducing these complexities, efficiency 

and optimization can be done. Combination of both searching and sorting has become 

the most used algorithm in computing, and it has been said that time spend by the 

computer is almost half of the CPU time performing them. So this indicates that if 

somehow the amount of time of sorting algorithms is reduced then the amount of time 

spend by computers also reduces as the process of sorting becomes faster. This is the 

main reason that research is being done on optimizing and making efficient sorting 

algorithms. 

Therefore, the fundamental field of computing is the development of fast, efficient 

and inexpensive algorithms for sorting and ordering lists and arrays. Thus whole 

computation can become faster just by making sorting algorithms optimized.  

As sorting is one of the most basic and frequent computational problems, and it is 

known that in order to sort n keys, time taken by the sorting algorithm is 𝑂(𝑛 𝑙𝑜𝑔 𝑛) 

time by any of common comparison based sort algorithms.  These comparison based 

sort algorithms operates in particular settings where they obtain information about the 

relative order of keys solely through pair-wise comparisons. Integer sorting being 

sorting of integer keys apart from general keys has always been an important task in 

applications related to the digital computer. In integer sorting problem, size of 

elements are generally considered of 𝑤-bits. 

In 1988, first introduction to the signature sort was given by Andersson, Hagerup, 

Nilsson and Raman [1]. It sorts n w-bit integers in 𝑂(𝑛) time when 𝑤 =  Ω 𝑙𝑜𝑔2+𝜀𝑛   



Page | 2  

 

for some   𝜀 > 0. Arne Andersson [1] presented signature sort and that was the 

combination of two techniques i.e. Packed Sorting and Range reduction. Later on, 

signature sort was transformed into randomized signature sort by using the concept of 

randomized algorithms with it. Still many researchers are trying to optimize the 

expected time and memory requirements of signature sort by using different and new 

concepts in different phases of signature sort [1-5]. 

 

1.1 Signatures [1, 5] 

In order to decrease the size of integers to be operated upon, signatures are created 

which have the lesser bit size than the original inputs.  To sort n keys where each key 

is of b bits, q number of logical partitioning is done of each key where each 

partitioning is of k-bit field i.e. 𝑘 = 𝑏/𝑞. A unique signature of 𝑂(𝑙𝑜𝑔 𝑛 ) bits can be 

obtained from each field‟s value by applying a universal hash function. A hash 

function [1] h:  0. . . . . . 2𝑘 − 1 → {0, . . . . . . 2𝑙 − 1} where 𝑙 = 𝑂(𝑙𝑜𝑔 𝑛), that operates 

on the set of all fields occurring in the input keys.  The hash function ℎ(𝑛𝑖)  is called 

for each field. If a key P consists of fields 𝑖1, 𝑖2. . . . . 𝑖𝑞  the concatenated signature of P 

is obtained by concatenating the signatures ℎ(𝑖1), . . . . ℎ(𝑖𝑞). The signatures of every 

field in a key can be computed together in constant time. 

In Figure 1.1, Field consists of the inputs keys i1, i2 and i3. 𝑠1, 𝑠2 and 𝑠3 are the 

signatures created from the inputs 𝑖1, 𝑖2 and 𝑖3, when hash functions ℎ 𝑖1 , ℎ 𝑖2  and 

ℎ(𝑖3) are applying on inputs.  

 

 

Figure 1.1: Formation of signatures [5] 
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1.2 Randomized Algorithms 

The output of algorithm depends upon the design of the algorithm. Algorithm may be 

deterministic algorithm or randomized algorithm. The behavior of deterministic 

algorithm states that the output of the algorithm will be correct for the input and 

behave same for the same input entered. Also it performs quickly.  But sometimes 

there is an advantage to randomized algorithms, which are non-deterministic, takes a 

source of random numbers and make random choices during execution. Also, the 

behavior of randomized algorithms can vary on fixed input too as the random 

numbers will affect the performance and the result. Randomization may provide a 

faster or simpler solution than the best known deterministic algorithm.  

A randomized algorithm uses a degree of randomness as a part of its logic and these 

random values guide the behavior so as to obtain good performance in the average- 

case. In a randomized algorithm the choices are main addition to inputs, algorithm 

takes a source of random numbers and makes random choices during execution. 

Behavior can vary even on a fixed input.  

Randomized (probabilistic) algorithm can be non-deterministic. They can make 

random choices but gives correct decisions. The same algorithm may behave 

differently when it is applied twice to the same instance of a problem.  They may be 

not very precise sometimes. Usually if more time is given then better precision can be 

obtained. 

 

 

Figure 1.2: Randomized algorithm 



Page | 4  

 

A randomized algorithm is a deterministic having a capability of making random 

choices during the compilation that do not dependent on the input values. By applying 

randomization, some worst-case situations can be hidden so that the probability of 

their occurrence becomes small. Therefore the expected runtime is better than worst-

case runtime. Two main advantages of randomized algorithm are as: first is 

performance; they run faster than the best known- deterministic algorithms for many 

problems; and secondly, they are simpler to describe and implement than 

deterministic algorithms of comparable performance. 

1.3 Types of Randomized algorithms 

Randomized Algorithms is mainly categorized into two types, depending on how the 

algorithm delivers the output with correctness and accuracy.  

1.3.1 Las Vegas Algorithm 

A Las Vegas algorithm is a randomized algorithm that always gives correct results; 

that is, it always produces the correct result or it informs about the failure. In other 

words, a Las Vegas algorithm does not gamble with the verity of the result; it only 

gambles with the resources used for the computation. A simple example is 

randomized quick sort, where the pivot is chosen randomly, but the result is always 

sorted. The usual definition of a Las Vegas algorithm includes the restriction that 

the expected run time always be finite, when the expectation is carried out over the 

space of random information, or entropy, used in the algorithm. 

Las Vegas algorithms can be used in situations where the number of possible 

solutions is relatively limited, and where verifying the correctness of a candidate 

solution is relatively easy while actually calculating the solution is complex. The 

name refers to the city of Las Vegas, Nevada, which is well-known within the United 

States as an icon of gambling. 

Las Vegas algorithms can be contrasted with Monte Carlo algorithms, in which the 

resources used are bounded but the answer is not guaranteed to be correct 100% of the 

time. By an application of Markov's inequality, a Las Vegas algorithm can be 

converted into a Monte Carlo algorithm via early termination. 
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1.3.2 Monte Carlo Algorithm 

A Monte Carlo algorithm is a randomized algorithm whose running time 

is deterministic, but whose output may be incorrect with a certain (typically 

small) probability. The related class of Las Vegas algorithms is also randomized, but 

in a different way: they take an amount of time that varies randomly, but always 

produce the correct answer.  

A Monte Carlo algorithm can be converted into a Las Vegas algorithm whenever 

there is a procedure to verify that the output produced by the algorithm is indeed 

correct. If so, then the resulting Las Vegas algorithm is merely to repeatedly run the 

Monte Carlo algorithm until one of the runs produces an output that can be verified to 

be correct. 

Whereas the answer returned by a deterministic algorithm is always expected to be 

correct, this is not the case for Monte Carlo algorithms. For decision problems, these 

algorithms are generally classified as either false-biased or true-biased. A false-biased 

Monte Carlo algorithm is always correct when it returns false; a true-biased behaves 

likewise, mutatis mutandis. While this describes algorithms with one-sided errors, 

others might have no bias; these are said to have two-sided errors. The answer they 

provide (either true or false) will be incorrect, or correct, with some bounded 

probability. 

1.4 Parallel Algorithm 

A parallel algorithm or concurrent algorithm, as opposed to a traditional sequential (or 

serial) algorithm, is an algorithm which can be executed a piece at a time on many 

different processing devices, and then put back together again at the end to get the 

correct result [6-15]. 

Some algorithms are easy to divide up into pieces like this. For example, splitting up 

the job of checking all of the numbers from one to a hundred thousand to see which 

are primes could be done by assigning a subset of the numbers to each available 

processor, and then putting the list of positive results back together [6-15]. 
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The performance of a parallel algorithm can be specified by bounds on its principal 

resources namely, processors and time. Let P denote the processor bound, and T 

denotes the time bound of a parallel algorithm for a given problem, the product PT is, 

clearly, bounded from below by the minimum sequential time, Ts, required to solve 

this problem. It is said that a parallel algorithm is optimal if PT = O(Ts). Optimal 

parallel sorting for both general and integer keys remained an open problem for a long 

time. Many optimal algorithms, both deterministic and randomized, for sorting 

general keys take O(log n) time. As in the sequential case, many parallel applications 

of interest need only sort integer keys. Until recently, no optimal parallel algorithm 

existed for sorting n integer keys with a run time of O(log n) or less [6-15]. 

By general keys, it is meant that a sequence of n elements drawn from a linearly 

ordered set s whose elements have no known structure. The only operation that can be 

used to gain information about the sequence is the comparison of two elements. If 

each of the n elements in a sequence is an integer in the range [1, nc] (for any constant 

c), these keys are called as integer keys. General sort is the problem of sorting a 

sequence of general keys, and integer sort is the problem of sorting a sequence of 

integer keys. 

1.5 Integer sorting using Signatures 

Arne Andersson [1] presented signature sort and that was the combination of two 

techniques i.e. Packed Sorting and Range reduction. Packed sorting was introduced by 

Paul and Simon [16] and developed further in [6]  and [9]saves on integer sorting by 

packing several integers into a single word and operates at the same time on all of 

them at unit cost. But this is the case when several integers to be sorted fit in one 

word. 

Range reduction, on the other hand, which underlies both radix sorting and the 

algorithm of Kirkpatrick and Reisch [17], reduces the problem of sorting integers in a 

certain range to that of sorting integers in a smaller range. The combination of these 

two techniques is straightforward: First Range reduction is applied as first task before 

packed sorting so as to replace the original full-size integers by small integers of 

which several fit in one word, and these later are sorted by applying packed sorting.  
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Later, an existing range reduction was combined with an existing packed sorting to 

obtain deterministic sequential results. Then newly introduced range reduction based 

on the use of signatures, short unique identifiers for long bit strings; the resulting 

algorithm, called as signature sort. 

In order to sort n keys of b bits each, first conceptual partitioning is done of each key 

into q k-bit fields where 𝑘 = 𝑏/𝑞. Each value occurring in one or more fields can be 

represented by a unique signature of 𝑂(𝑙𝑜𝑔 𝑛 ) bits, obtained by applying a universal 

hash function to the value. The signatures of all fields in a key can be computed 

together in constant time and their concatenation is an integer of 𝑂(𝑞 𝑙𝑜𝑔 𝑛) bits. 

After sorting the concatenated signatures of input keys in linear time, path-

compressed trie is constructed that takes also 𝑂(𝑛) time. The trie is a tree of 2𝑛 

edges. Each leaf corresponds to an input key, and edge is associated with a 

distinguishing signature. All that remains is to sort the siblings below each node in the 

tree by the original (𝑏/𝑞) − bit field‟s values corresponding to their distinguishing 

signatures, since after the operation a sorted output of n input keys can be read-off the 

tree in a left-to-right scan. Signature Sort by Andersson [1] performs in the expected 

linear time and space but gives very bad performance regarding CPU running time 

and memory requirement. 

1.6. Structure of The Thesis 

The rest of thesis is organized in the following order: 

Chapter-2: This chapter will provide the overview of all recent done in area of 

integer sorting, randomized algorithms, parallel algorithms and integer sorting using 

signatures. 

Chapter-3: This chapter gives the problem statement and methodology used to solve 

the problem. 

Chapter-4: This chapter provides the solution to the problem discussed in chapter-3. 

This chapter also gives the algorithm for improved randomized signature sort. 
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Chapter-5: This chapter explains the implementation, testing and result of algorithm 

given in chapter-4. 

Chapter-6: This chapter gives the conclusion of the thesis with the future scope of 

topic. 
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Chapter-2 

Literature Review 

 

Integer sorting has always been an important task in connection with the digital 

computer. The table-1 depicts various existing comparison based algorithms and their 

complexities with relative performance [18]. 

Table-2.1: Comparison of sorting algorithms 

Name Best Average  Worst Memory 
Relative 

Performance 

Insertion 

Sort 
𝑂(𝑛) 𝑂(𝑛2) 𝑂(𝑛2) 𝑂(1) Average 

Shell Sort 𝑂(𝑛) 𝐷𝑒𝑝𝑒𝑛𝑑𝑠 𝑂(𝑛 𝑙𝑜𝑔𝑛 2) 𝑂(𝑛) Average 

Binary tree 

sort 
𝑂(𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛) Good 

Selection 

sort 
𝑂(𝑛2) 𝑂(𝑛2) 𝑂(𝑛2) 𝑂(1) Average 

Heap sort 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(1) Good 

Bubble sort 𝑂 𝑛2  𝑂(𝑛2) 𝑂(𝑛2) 𝑂(1) Average 

Merge sort 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) Depends Good 

Quick sort 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛2) 𝑂(log 𝑛) Good 

Randomized 

Quick sort 
𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(log 𝑛) Good 

Signature 

Sort 
𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛) Linear Poor 

Randomized 

signature 

sort 
𝑂(𝑛) 𝑂 𝑛  𝑂(𝑛) Linear Poor 
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The sorting problem is to sort n elements, according to a given ordering, has a tight 

𝑂(𝑛 log 𝑛) bound in the comparison model. This lower bound is achievable without 

randomization. 

Sorting integers is a recurring problem in computer science. The question is how fast 

sorting can be done to sort n integers from {0,1, … . , 𝑢 − 1} sorting on word RAM 

with w-bits words, where 𝑏 = 𝑙𝑜𝑔 𝑢 ≤ 𝑤. 

Few important used sorting algorithms and running times [18]: 

Comparison sort -  𝑂(𝑛 𝑙𝑜𝑔 𝑛) 

Counting sort - 𝑂(𝑛 + 𝑢), 𝑂(𝑛 + 𝑢) space 

Radix sort -  𝑂(𝑛
log 𝑢

log 𝑛
 ) 

Van Emde Boas‟s sort - 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑢), 𝑂(𝑢) space  

Algorithms sorting n keys in 𝑂(𝑛 𝑙𝑜𝑔 𝑛) time are considered of the comparison-based 

sorting category [19, 20]. These algorithms operate in the comparison-based settings 

i.e. they obtain information about the relative order of keys exclusively through pair-

wise comparisons. However, this model may not always be the most natural one for 

the study of sorting problems, since real machines allow many other operations 

besides comparison.  

The field of better than 𝑂(𝑛 𝑙𝑜𝑔 𝑛) integer sorting opened up around 1990 when 

Subsequently, Andersson [1] improved the bound to 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) time and linear 

space using a combination of Kirkpatrick and Reisch‟s range reduction scheme [17] 

and packed sorting [16]. Nilsson successfully implemented with algorithm and 

demonstrated it performing well in practice [23]. However, there is some debate to its 

cache performance, which could point to a future area of study. Very recently the 

Andersson [1] bound was improved to 𝑂 𝑛 log log 𝑛  by Han and Thorup [4]. Each 

paper has a slightly different take on the computational model, reasonable word size, 

and operations available. Along with the 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) sorting algorithm [2, 24-26], 
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Andersson [1] also presents an 𝑂(𝑛) expected running time algorithm called signature 

sort. 

The first signature sort was developed in 1988 by Andersson, Hagerup, Nilsson and 

Raman[1]. It sorts n w-bit integers in 𝑂(𝑛) time when 𝑤 =  Ω 𝑙𝑜𝑔2+𝜀𝑛   for 

some   𝜀 > 0. But the algorithm for the sort was very complicated and had many 

drawbacks. The sorting algorithm described by Andersson [22] in 1996 achieved 

signature sort‟s running time through two main tools, range reduction and packed 

sorting. 

Many researchers have worked on parallel integer sorting [6-11, 27] and lot of work 

has done to achieve better tight bound for random access machines [16, 28-30]. 

2.1 Range Reduction  

Range Reduction turns a problem of sorting n integers of b bits into a problem of n 

integers of < b bits. Repeated use of range reduction will eventually reduce the 

problem to a sorting problem that can be solved with packed sorting. The range 

reduction technique for signature sort computes a hash, or signature, for each of the 

input integers being sorted and then recursively sorts these hash values. 

The first tool, range reduction, reduces the problem of sorting n integers with b bits to 

sorting n integers with 𝑏/2 bits in 𝑂(𝑛) time. Using randomization, it can be done in 

𝑂(𝑛) space, 𝑂  𝑢  space is needed otherwise. 

Applying range reduction 2 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 times will reduce the number of bits from 

𝑏 = 𝑙𝑜𝑔 𝑢 to 𝑏/𝑙𝑜𝑔2𝑛. If word-size 𝑤 ≥ 𝑏 𝑙𝑜𝑔2, then fit 𝑙𝑜𝑔22𝑛 elements in each 

word. 

In following subsection range reduction scheme by Kirkpatrick and Reisch is 

discussed in detail in order to provide insight knowledge of reduction technique. This 

technique has been modified by many researchers but original version is still 

preferred.  
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2.1.1 Range Reduction Scheme [17] 

Range reduction reduces sorting n numbers of 𝑏 ≤ 𝑤 bits to sorting n numbers of 

𝑏/2 bits at a cost of 𝑂(𝑛) time. There are four steps: 

1 Cluster each number x according to high(x). 

2 Form coordinate pairs and sort. 

3 Cluster sorted pairs by second coordinate. 

4 Concatenation min(B[high]) and high cluster for each high in order from * 

cluster. 

Range reduction uses 𝑂  𝑢  space for B and cluster arrays. It is possible to cluster 

together like values using hashing in 𝑂(𝑛) time and space. 

Range reduction reduces the sorting problem by sorting coordinate pairs by the first 

coordinate. It is necessary to move the second coordinate, the auxiliary data, with the 

first as sorted.  

2.2 Packed Sorting  

Packed sorting capitalizes on the ability of computers to operate on words in constant 

time. By packing several integers into a single word, parallelism can be used to sort 

faster. This idea was first introduced by W. Paul and J. Simon [16], and then further 

developed by numerous others, including a good description by Albers and Hagerup 

[6]. 

Packed Sorting; the second tool used in the sorting algorithm, allows for 𝑂(𝑛) sorting 

if the word-size 𝑤 ≥ 𝑏 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛. 

For packed sorting, append element‟s auxiliary data to each element. This requires 

increasing the number of bits needed to store each entry from 𝑏 to 2𝑏 and adds one 

more range reduction step to the overall algorithm. 
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Figure 2.1: Packing b-bit integers into w-bit word. 

Packed sorting, due to Albers and Hagerup [6], can sort n integers of b bits in 𝑂(𝑛) 

time, given a word size of 𝑤 ≥  2(𝑏 +  1)𝑙𝑔 𝑛 𝑙𝑔 𝑙𝑔 𝑛. Therefore pack 

𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 elements into one word in memory. Then leave one zero bit between 

each integer, and w/2 zero bits in the high half of the word; an adapted version of 

merge sort to sort the elements. There are four main operations that allow doing this 

[6]: 

1. Merge a pair of sorted words with 𝑘 ≤  𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 elements into one sorted 

word with 2k elements.  

2. Merge sort 𝑘 ≤  𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 elements, yielding a packed word with elements 

in order. Using (1) for the merge operation, this takes time T(k) = 2T( k2) + O(lg k). 

Using the master theorem or drawing the recursion tree shows the leaves dominate the 

running time, so T(k) = O(k). 

3. Merge two sorted lists of r words, each word containing 𝑘 =  𝑙𝑜𝑔𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 

sorted elements, into one sorted list of 2r sorted words. By moving the first word of 

each list and merging them. The first half of the resulting word can be output, since its 

k elements are necessarily the smallest of all those remaining.  Then masking is done 

on the second half of the word, which contains the larger k elements. This word is 

placed at the beginning of the list which formerly contained the maximum element in 

the word, maintaining the sorted manner of the lists. This takes 𝑂(𝑙𝑜𝑔 𝑘) time to 

output a word, so the merge operation takes total time 𝑂(𝑟 𝑙𝑜𝑔 𝑘). 

4. Merge sort with (3) as the merge operation and (2) as the base case, yielding a 

recurrence of 
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𝑇(𝑛)  =  2𝑇(𝑛2)  +  𝑂(𝑛𝑘 𝑙𝑜𝑔 𝑘), Where 𝑘 =  𝑙𝑜𝑔𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛. 

There are 𝑙𝑜𝑔 𝑛𝑘 =  𝑂(𝑙𝑜𝑔 𝑛) internal levels in the recursion tree, each taking total 

time  𝑂(𝑛 𝑘 𝑙𝑜𝑔 𝑘)  =  𝑂( 𝑛 𝑙𝑜𝑔 𝑛). So internal levels contribute a cost of 𝑂(𝑛). The 

𝑛 𝑘 leaves each take 𝑂(𝑘) time, so the total cost of the leaves is also 𝑂(𝑛). 

2.3 Sorting with Packed Merge 

The above merge operation is used to pack words and then sort the packed words. A 

word is packed using a merge sort which uses the above merge as the merge 

operation. The word-packing is the base case of another merge sort that uses the same 

merge operation to merge two sorted lists of r packed words in 𝑟 𝑙𝑜𝑔 𝑘 time. This 

saves a factor of Ɵ (𝑘/ 𝑙𝑜𝑔 𝑘) over a normal merge sort. Given that 𝑘 =

 Ɵ (𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛), this savings equates to [5]: 

𝑛𝑙𝑜𝑔𝑛.
log(log n log log n)

log n log log n
 

𝑛𝑙𝑜𝑔𝑛.
log log n +  log log log n

log n log log n
 

𝑛𝑙𝑜𝑔𝑛.
1

log n
 

Or  𝑂(𝑛) time [5]. 

In 2003, Ben Vandiver and Alex Rolfe [5] also implemented the expected linear time 

and space requirement signature sort algorithm of Andersson [1] to compare its 

performance against traditional sorting algorithms. They used packed sorting idea 

give by W. Paul and J. Simon [16] and further developed by Albers and Hagerup [6].  

They tried using the concept of maintaining ranks and range reduction. The other 

phases included were sorting recursively and trie construction. 

  



Page | 15  

 

2.4  Sorting Recursively [5, 6, 16] 

The next step after sorting using packed merge is to sort the signatures recursively. If 

the signatures are small enough, they can be sorted directly using the packed sorting. 

Otherwise, recursively call the signature sorting algorithm.  

2.5  Trie Construction [5, 16] 

The sorted signatures do not give us the sorted input values directly. Instead, the 

sorted signatures will allow us to compute a path compressed trie of the signatures in 

linear time. Constructing this trie requires that compute the longest common prefix for 

all adjacent pairs of signatures in the sorted list and then use a particular construction 

algorithm that first builds a binary Cartesian Tree to get the path compressed trie. 

There are n−1 internal nodes and n leaves, one per signature, in the resulting trie. 

Once the algorithm has built a binary trie, the tree is flattened; if the fields of the 

signature were each l bits, then at most l levels of the tree will be flattened into one 

node to give a maximum out-degree of l. Thus, each node/edge in the trie represents 

on of the 2l possible values of the signature field at the position corresponding to the 

depth in the tree. If the hash function generated no collisions, then sort the nodes of 

the tree to produce the sorted output. Each leaf, of which there are n, is labeled with 

the input value corresponding to the signature with which the leaf was first labeled. 

Sort the internal nodes (working upwards towards the root), labeling each with the 

minimum and maximum values of its children. To find the minimum and maximum 

value for internal nodes (for leaves, the minimum and maximum are just the input 

value with which it was labeled), sort the children by their minimum value. Since 

each node has constant out degree (assuming l is fixed), this sorting can be done in 

constant time at a node. Since there are at most n nodes (the binary trie had n−1 

internal nodes; converting to the more general form of the trie may have removed 

internal nodes, but didn‟t add any), the total time to sort the trie is 𝑂(𝑛). 

Sorting the children of a node produces a process similar to radix sort. In the trie, each 

level corresponds to one field of l bits in the signature. Recall that each field in the 

signature is the hash of one field in the original input value. Thus, sorting at the ith 

level in the trie is equivalent to sorting based on the ith field of the original input 
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value. If the hash worked well (without collisions), then input integers with the same 

value in the ith field will all be grouped in the same node. Thus, at the top level, for 

example, sorting the children is equivalent to sorting the groups of input values by 

their first (most significant) field, where all nodes in a group/child share the same first 

field. At the second level, the sort organizes the input values with the same first field 

by their second field. 

Once the trie has been fully sorted, the sorted input values can be read by traversing 

the leaves from left to right. Again, this can be done in 𝑂(𝑛) time even if traverse all 

𝑂(𝑛) of the internal nodes in the process. If the hash function generated collisions, 

then the grouping in the trie will not be correct and all input elements group together 

at the 𝑖𝑡ℎ level will not share the same value in their 𝑖𝑡ℎ field. Since it is not possible 

to discover these collisions in the allotted time, the algorithm runs to completion, 

ignoring the possibility of collisions, and then checks its output at the end. This check 

ensures that the output sequence is non-decreasing and can be performed with a 

linear-time scan of the proposed output. If the output is not properly sorted, the 

algorithm merely runs again.  

But whole implementation didn‟t conclude into expected output as again the output 

was poor compared to quick sort.  The reason for the output is considered as the 

number of operations in the signature sort range reduction is much larger: 

The number of linear time operations in the signature sort range reduction is much 

larger: 

1. Computing each signature takes a multiplication, several shifts, and several 

logical operations. 

2. Building the binary trie requires copying at least 2𝑛 integers. 

3. Building the binary trie requires 𝑂(𝑛) comparisons 

4. Converting the binary trie to a general form requires at least n comparisons. 

5. Building and converting the trie requires following at least 2𝑛 pointers. 

6. Traversing the tree to generate the output requires following at least n pointers 

and copying 𝑛 integers. 
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7. The sorted signatures require 𝑂(𝑛) auxiliary (not input or output) memory, 

reducing the gains our algorithm might see from the CPU‟s cache. 

8. The trie requires 𝑂(𝑛) auxiliary memory (around 20 bytes per input integer), 

further reducing the cache‟s effectiveness. 

9. Many of the trie construction procedures are recursive, so there are at least two 

function calls for every input element. 

In experiments, to measure the performance of the randomized signature sort with the 

quick sort, packed sorting and signature sorting algorithms were ran on a variety of 

input sequences. The same algorithms were also run for binary inputs but of no use. 

The difference in the performance was clearly visible. 

2.6  Result from Existing Signature Sort 

In figure 2.2 shows the comparison between quick sort and existing randomized 

signature sort. 

 

Figure 2.2: Runtime comparison between randomized quick sort and existing 

randomized signature sort 
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The graph depicts that may be for smaller inputs the performance of both the 

algorithms is almost similar but as the input sequence length increases the difference 

between the performance of the two also increases. Thus signature sort showed very 

poor performance because the time consumption for sorting n integers increases as the 

size of n increases. 
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Chapter -3 

Problem Statement 

 

Computational complexity means how efficiently problems can be solved on 

computers. In order to achieve efficient signature sort algorithm, randomization 

technique seems better option than deterministic algorithm. 

On implementing randomizing signature sort algorithm, it gives relatively poor 

performance than the traditional algorithm like randomize quick sort. It happens due 

to extra operations associated with randomized signature sort. This operation includes 

packing, unpacking and creation of signatures. So there is a need to enhance the 

performance of randomize signature sort either by reducing extra operation or by 

modifying the operations in such a way that the running time of the operations 

improves. All major operations of randomize signature sort i.e. Signature creation, 

packing, word comparison and unpacking; can be improved.  

In order to make randomize signature sort more efficient, one has to work on its main 

two phases; namely Packed sorting and range reduction [1, 5, 6, 16]. Though many 

researchers have worked in optimizing these two phases but as optimizing a 

randomized integer sorting algorithm is always a challenging task therefore, there is 

always a scope to improve it for better performance. 

Better packing mechanism is major concern because if packing of signature is not 

done properly than chances are there that few bits may get lost. So the mechanism 

should be efficient to work in accordance to the size of signature bits so as to be fitted 

in the limited word-size. 

Also, better comparison method is another scope of improvement. By using better 

implementation ways like use of appropriate hashing function, bitwise operators, and 

faster computation can be achieved. Thus intent is to simple and stable randomized 

signature sort running efficiently and lesser complex than its previous versions. 
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Chapter-4 

Improved Randomized Signature Sort Using Hashing and 

Bitwise Operators 

 

In this thesis, the performance of randomized signature sort has been improved with 

the use of hashing and bitwise operators. It gives significant improvement in the 

performance as compared to existing randomized signature sort. Improved 

randomized signature sort also reduces the extra operation required by the signature 

sort. Instead of dividing integer into fields, simply hash each integer into signature 

which is only 𝑂(𝑙𝑜𝑔 𝑛) bit size long. It reduces the requirement of dividing integers 

into field as integer has only one signature of reduced bit size. Then multiple 

signatures are packed into one word. In this way, single word is used for multiple 

integers, instead of using one word for one field of integer. Thus, the operation 

required after this in only comparison. 

The signature sorting algorithm uses the signatures which are computed by applying 

hash function on the integer. The main purpose of using this idea is to implement it on 

input values to reduce the size of the integers being sorted. The range reduction 

depends on the hashing algorithm not generating collisions; if collisions occur, the 

output will not actually be sorted, making this a Monte Carlo algorithm. Thus, the 

hash function is very important and it must not generate collision at all for better 

results. The hash function used hashes integer into 𝑂(𝑙𝑜𝑔 𝑛) bit size signature. 

The benefit of using bitwise operators in the implementation is to impose implicit 

parallelism. Also, bitwise operations are slightly faster than addition and subtraction 

operations and usually significantly faster than multiplication and division operations.  

The improved randomized signature sort will work in following steps: 

1. Reading input. 

2. Creating signatures from input values of 𝑂 𝑙𝑜𝑔 𝑛  bit length. 

3. Packing of signatures in words. 
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4. Comparing words using bitwise operators and sorting. 

5. Unpacking signatures from words and getting sorted sequence. 

4.1 Machine Model  

The machine model is a normal computer which holds an instruction set 

corresponding to what is programmed in common standard programming language 

such as C/C++ or JAVA. A processor determined word-size W, confines how large 

integers can be processed in constant time. It is assumed here that each input integer 

fits in a single word and for generic code, the type of a full word integer e.g. long int, 

should be a macro parameter in C or template parameter in C++ or a primitive type in 

JAVA. The unit-cost time measure is adopted where each operation takes constant 

time [4]. Interestingly, the traditional theoretical RAM model of Cook and Reckhow 

[29] allows infinite words.  

According to Yijie Han and Mikkel Thorup [4], the outcome of infinite words with 

operations like shifts or multiplications, exponentially big parallel processor can be 

simulated, solving all problems in NP in polynomial time. So they suggested banning 

such operations from unit-cost theory RAM, making it even more contrived from a 

practical view-point. But it is possible to achieve such algorithms that can be 

implemented in the real world considering the real-world limitation of a fixed word-

size in mind. This model is named the word RAM (Hagerup [9]). The word RAM has 

a fairly long tradition within integer sorting, being advocated and used by Kirkpatrick 

and Reisch [17]. 

In word RAM, addition and subtractions can be performed on integers and this is 

considered as an advantage over the comparison based model by word RAM. Hence, 

this word RAM can be used to code multiple comparisons of short integers combined 

in single words. The idea of multiple comparisons was first introduced by Paul and 

Simon [16]. The word RAM model is different from the comparison based model as 

well as from the pointer machine in which integers can be used, and segments of 

integers, as addresses. This idea links to radix sort where an integer is viewed as a 

vector of characters, and these characters are used as addresses. Another idea of word 

RAM is to hash the integers into smaller ranges, naming these hash integers as 
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signatures in this paper. Here radix sort goes back at least to 1929 [18] and hashing 

goes back at least to 1956 [18], both being developed for efficient problem solving in 

the real world. Also research has been done on the further use of RAM for advanced 

tabulation of complicated functions over small domains. 

As a simple example, considering computer architecture of 64 bits i.e. 64 bits are 

processed in single instruction cycle. Actual comparison operation is performed on 

maximum of 32-bit integers; if having a range of integers then these integers can be 

mapped to lower number of bits. Thus, several integers are packed into a single word. 

Thus 64 bit machine can compare 16 signatures i.e. hash value of input integers with 

their size of 8 bits in single instruction cycle. 

Summing up, the concept facilitated has been discussed by the word RAM is well 

established in the practice of writing fast code. Hence, on disallowing these concepts, 

the time complexity of running imperative programs on real world computers, are not 

being discussed. Thus this RAM model plays a vital role in reducing the overhead and 

enhancing the performance of the algorithm. 

4.2 Signatures 

In order to decrease the size of integers to be operated upon, signatures are created 

which have the lesser bit size than the original inputs. The signatures are computed 

for each input with a universal hash function. Such signatures must have the size of 

𝑂 𝑙𝑜𝑔𝑛  where n is the number of input integers. The hash function used to create 

these signatures, must assure collision free hashing.  

The signatures created with this method must follow the property:  

If     𝐴𝑖  ≤  𝐴𝑗   ∀  𝑖, 𝑗  ∈   {0, 1 …𝑛 − 1} then 

 𝑆 𝑖 ≤ 𝑆𝑗   ∀  𝑖, 𝑗  ∈   {0, 1. . . 𝑛 − 1}. 

Where 𝐴𝑖‟s are the input integers, 𝑆𝑖‟s the corresponding signatures and n is the 

number of input integers.  
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4.2.1 Hashing 

The hash function is applied on integers to reduce their size by creating signatures of 

𝑂(𝑙𝑜𝑔  𝑛) bit size. The hash function must provide collision free hashing to ensure 

accurate and better result. The hash function must take 𝑂(𝑛) expected time. This will 

improve the overall performance of algorithm. The following hash function from [5] 

is being implemented that is used for hashing of integers into signatures. Division 

must be avoided in hash function for better performance. The hash function is, 

    ℎ𝑎 𝑥 =   (𝑎𝑥 𝑚𝑜𝑑 2𝑘) 2𝑘−𝑙   

Where, 𝑘 is the number of bits in the input integer, 

      𝑙 is the number of bits in the signature which will be 𝑂 𝑙𝑜𝑔𝑛 . 

      𝑎 is randomly chosen between zero and 2𝑘 .   

Since the division in the above function is division by a power of two, it can be 

implemented as a left shift. This function will take 𝑂 𝑛  time. The above said hash 

function assures 𝑂 𝑙𝑜𝑔𝑛  bit size of signatures and also collision free result [5]. 

4.3 Packing  

In Andersson‟s concept [1] integers are divided into fields and each of these fields is 

packed into words. This is a bit of overhead as each field of integers is required to be 

packed and compared. The concept of word formation has been improved using 

hashing. As discussed above hash function will hash whole integer into a signature 

with reduced bit size of 𝑂(𝑙𝑜𝑔 𝑛). After that the packing of multiple signatures into 

one word will be done. 

It is an important phase as multiple integers i.e. signatures (hashes) of integers will be 

packed in a word. Also ensure that this phase runs error free while implementing. 

If w is word size of the machine, 𝑠𝑏 is the number of bits in the signature, 𝑤𝑙 is the 

word length, 𝑚 is the number of words, 𝑙 is the number of signatures in a word and 𝑛 

is the number of input integers then: 
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 𝑙 = 𝑤𝑙 𝑠𝑏  

𝑚 = 𝑐𝑒𝑖𝑙(𝑛/𝑙) 

There will 𝑂(𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 log 𝑛) number of words be created overall. The word 

formation phase will take 𝑂(𝑛) time. The following pseudo code is for word 

formation: 

 Word and sign are the array of words and array of signatures respectively. 

Step 1: Repeat for i=1 to m by 1. 

Step 2: Repeat for j=1 to L by 1. 

Step 3: word[i]= (word[i] << sb) | sign[i*L+j]. 

Step 4: Return. 

Diagrammatically above algorithm can be represented as: 

 

Figure 4.1: Packing of signatures in a word. 
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In above figure, W represents the actual word, sb represents the signature bit size and 

L is the number of signatures that can be packed in a single word. Above case 

discussed happens when the 𝑤 = 𝑠𝑏 ∗ 𝑙 where w is word length. If the perfect packing 

is not possible then some bits remains useless in a word. 

 

Figure 4.2: Packing of signatures with extra bits. 

4.4 Comparison Sorting  

Comparison sorting is another important phase which is applied on words in order to 

get the sorted result. Here sorting means exchanging the positions of the signatures 

from one word to another word and also exchanging positions within word itself. This 

is the phase where actual comparison will occur, which will result in sorting. As now, 

there are multiple integers in one word thus, the word itself also be sorted after sorting 

has occurred in between words. Thus, the whole procedure of sorting can be divided 

into two sub-phases.  

The first sub-phase is sorting between words. This can be done by comparing two 

words and checking corresponding bits of signatures to merge them. The idea is to use 

bitwise operations to get the result. As bitwise operators are comparatively fast thus 

use of these operators will speed up the processing the algorithm. Only two bitwise 

operators 𝑋𝑂𝑅 and 𝐴𝑁𝐷  are required to perform this task. The task includes applying 

𝑋𝑂𝑅 and 𝐴𝑁𝐷 in such a way that the result will show which signatures need to be 

swapped. First, apply 𝑋𝑂𝑅 on words and then apply 𝑋𝑂𝑅 and 𝐴𝑁𝐷 operators on 

result with the word in which keep smallest of this signatures.  

The above discussed operations will give non-zero value on corresponding bits where 

signatures are needed to be swapped. Thus, swap those signatures again using 𝑋𝑂𝑅 

operator. Hence, only a constant time is required to perform the above said operation. 

As there will be a maximum of 𝑂(𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) words which are to be compared, 

this will lead to 𝑂((𝑙𝑜𝑔𝑛 𝑙𝑜𝑔𝑙𝑜𝑔𝑛)2)   number of maximum comparisons. These 

comparisons can be further reduced by using any traditional deterministic algorithm 
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like quick sort. By applying the traditional deterministic algorithm the number of 

comparison will be reduced to 𝑂(𝑙𝑜𝑔𝑛 𝑙𝑜𝑔𝑙𝑜𝑔𝑛 𝑙𝑜𝑔(𝑙𝑜𝑔𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔𝑛)).  

 Knowing that,  𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 <  (𝑙𝑜𝑔𝑛) 2 

Taking 𝑙𝑜𝑔 on both sides,   𝑙𝑜𝑔 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 < 2 𝑙𝑜𝑔𝑙𝑜𝑔 𝑛 

Multiplying both sides with  𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛, 

𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 < 2 𝑙𝑜𝑔 𝑛  𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 2 

Now as,  (𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)2 ≤ 𝑙𝑜𝑔 𝑛 

Thus,   𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔(𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) ≤ 2(𝑙𝑜𝑔 𝑛)2 

Now,   (𝑙𝑜𝑔 𝑛)2 ≤ 𝑛   

Hence,       𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔(𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) ≤ 2𝑛 

This proves that total number of comparisons will be 𝑂(𝑛). As there is constant 

number of signatures in every word thus there is need to perform this procedure only 

a constant number of times which is independent of number of integers. The overall 

expected time for this sub-phase is only 𝑂(𝑛). 

Now after first sub-phase the words will be in sorted order with each other, but there 

are multiple signatures in every word thus there is need to take care of that. Here there 

is need to perform sorting within word itself. This can be done in similar fashion as 

sorting is done between words. The one more thing is needed to take care of here is 

masking of signatures which are not participating in sorting operation. The task 

consists of comparing signatures within word. Here also bitwise operators will be 

used as above. Hence, there is constant number of signatures in a word. This will take 

constant number of operations. There is at most 𝑂(𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) number of 

words, that implies 𝑂(𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) number of operations are required which is 

less than 𝑂(𝑛).  

Let‟s suppose there are 𝑚 signatures in a word. So on comparing each signature with 

other, it will take 𝑂(𝑚2) expected time. This expected time is further reduced to 
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enhance the performance by simply using divide and conquer technique on word. This 

is shown in the figure-4.3: 

 

Figure 4.3: Comparison within word 

The algorithm for comparison within word is given as follows: 

Step 1: Set i=1. 

Step 2: Divide word into 2
i
 parts. 

Step 3: Compare each adjacent parts i.e. 1
st
 with 2

nd
, 3

rd
 with 4

th
 and so on. 

Step 4: Exchange the positions of signatures according to the result of step 3               

as exchanged while performing comparison between words.  

Step 5: Stop. 

This algorithm first divide a word into 2 halves and compare them bitwise operations. 

And according to the result of bitwise operations, the positions of signatures are 

exchanged, and in second pass each half considered as individual word and same task 

is performed on those. In this way, parallelism of uniprocessor system is being 

exploited as done while performing comparison between words. The number of 
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passes will be log m and total number of comparison will be c log m where m is the 

number of signatures in a word.  Now there is need to call the algorithm for all words 

formed. Thus, finally words will be sorted itself. This shows that there will be at most 

𝑂(𝑙𝑜𝑔 𝑚) passes and in each pass only constant number of comparisons is required. 

Thus total number of comparisons will be  𝑐 𝑙𝑜𝑔 𝑚.  

Considering the space requirement it is clear that the only extra space requirement is 

𝑂(1) which is used to perform bitwise operations on words. 

The above discussion shows that the whole sorting operation can be completed in 

𝑂(𝑛) expected time and uses 𝑂(1) extra memory. In this phase, actual sorting will be 

implemented. Here sorting means exchanging the positions of the signatures from one 

word to another word and also exchanging positions within word itself. The whole 

sorting procedure is divided into two sub-phases.  

The first sub-phase is sorting between words. The sorting between words includes 

applying 𝑋𝑂𝑅 and 𝐴𝑁𝐷 in such a way that the result will show which signatures need 

to be swapped. First, apply 𝑋𝑂𝑅 on words and then apply 𝑋𝑂𝑅 and 𝐴𝑁𝐷 operators on 

result with the word in which smallest of this signatures will be kept. This operation 

will give non-zero value on corresponding bits where signatures are needed to be 

swapped. Later swap those signatures again using 𝑋𝑂𝑅 operator. The overall 

expected time for this sub-phase is only 𝑂 𝑛 . This is pseudo code for the first sub-

phase: The sort function will take two words as input and sort them. Let two words be 

x and y. 

Sort(x, y) 

Step 1: Set temp=x XOR y 

Step 2: Set temp = temp XOR x 

Step 3: Set temp= temp AND y 

Step 4: For all non zero signatures in temp, Swap the corresponding signatures in x 

and y. 

Step 5: Return. 
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Figure 4.4:  Word comparison 

In above figure 4.4, there are two words taken, let it be A and B, both contains 

signatures formed by hashing integers. Now in order to sort first perform XOR 

operation between the two words.  Then again XOR operation is performed with the 

previous resultant.  

And, finally the new result obtained will be ANDed with second word i.e. B. If in the 

final result obtained, all bit in 𝑆𝑖
``` is zero then the Si and SL+i are need to be swapped in 

order to keep the smallest signatures in a single word. 

In figure 4.5, while comparing the words in iteration, only one signature of word A is 

compared to the single signature of another word B. It cannot assure that all 

signatures of a word are smaller than all signatures of another word. So shifting is 

needed in either of a word. 
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Figure 4.5: Comparison between words. 

Figure 4.5 shows that iteration 1 to L each time one signature of a word from leading 

side is shifted to tail side. This will insure that all signature of a word will be smaller 

than the signatures of another word. 

After first sub-phase the words will be in sorted order with each other, but there are 

multiple signatures in every word, hence there is need to perform sorting within word 

itself. Then comparison is performed by recursively dividing a word into 2 halves 

until reaches to single signature in a half. The expected time for this sub-phase will be 

𝑂(𝑙𝑜𝑔 𝑚). 

The algorithm for comparison within word is given as follows: 

Step 1: Repeat for i=1 to logL. 

Step 2: Divide word into 2
i
 parts. 

Step 3: Call Sort() for each adjacent parts i.e 1
st
 and 2

nd
, 3

rd
 and 4

th
, so on. 

Step 4: Return. 

4.5 Unpacking 

The unpacking implies when the sorting has been done there is a need to get back the 

original input integers from the sorted signatures. In order to perform this task there 
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are two ways: one possible way is to keep track using index and another is to create 

reverse hash function. During the implementation of improved randomized signature 

sort, the promoted idea is the usage of indexing. If indexing is used then indexes are 

swapped as the signatures are swapped therefore it‟s easier to sort the signatures and 

get back the original input.  

The unpacking mechanism can also be designed to get sorted signatures from words. 

This can be done in similar fashion as done in packing. For this a mask will be 

required. AND operation of the mask with the words will be taken. This gives a single 

signatures, after that shifting of mask is done according to the size of signatures and 

this process is repeated until all signatures from words is unpacked.  
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Chapter -5 

Testing and Results 

 

5.1 Testing 

In order to compare the performance of improved randomized signature sort with the 

existing signature sort as well as quick sort, the algorithms is run several time with 

different number of input size and the result obtained are then compared. The 

comparison is done on two main basis:  the CPU running time and, the memory 

requirement. 32-bit integers are used as input and 64-bit long data type provided by 

Java to store words. The input integers are generated using random function and 

stored in a file. The implementation of algorithms is done in Java6.0 on Eclipse-IDE 

using OOP approach. The platform used is Intel 64-bit with Core i3 processor having 

a frequency of 2.40 GHz with Windows 7(64-bit) Enterprise Edition running on it. 

The System had a RAM of 3GB. While measuring the performance i.e. in order to 

collect the details, all other extra processes were terminated so that actual measure can 

be taken.  

5.1.1  Runtime Comparison 

The algorithm ran several times on a sequence of randomly generated number to find 

the average running time. The runtime of the algorithm is measured using 

currentTimeMillis() which is provided by the System Class. The function claims to 

provide CPU time measuring in milliseconds. The running time includes reading input 

from a file and writing output to another output file. The runtime also includes time 

consumed in the process of hashing of integers into signatures, packing of signatures 

into words and extracting signatures from words. 

The table-1 shows the data collected of running time for improved randomized 

signature sort, existing randomized signature sort and randomized quick sort 

algorithm. The CPU time shown in table for all algorithms is in Milli-Seconds. 
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Table-5.1: CPU runtime details 

N 
Existing randomized signature 

sort 

Quick 

sort 

Improved randomized signature 

sort 

50 1 1 1 

100 2 4 5 

200 4 15 11 

300 12 16 16 

400 18 17 22 

500 24 18 31 

600 32 20 32 

700 40 22 32 

800 54 25 44 

900 59 29 46 

1000 76 31 47 

2000 206 52 94 

4000 623 83 234 

5.1.1.1  Improved Randomized Signature Sort 

The figure 5.1 shows that the graph when plotted between CPU time, measured in 

Milliseconds and number of input size sequence length, the graph grows close to 

linear. As the input size increases the CPU time also increases proportionally. For 

small input sequence lengths, the running times are relatively linear. As improved 

randomized signature sort using hashing and bitwise operators, the tasks including 

packing, comparison and unpacking tasks takes relatively takes lesser time than the 

existing one. 
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The increase in running time of algorithm is directly proportional to number of input 

integers. The slope clearly shows that whenever number of input integers is increased 

then the running time is increased proportionally. This implies that the performance of 

the exponential tree sorting is very good. 

 

Figure 5.1: Runtime plot of improved randomized signature sort 

5.1.1.2 Improved Randomized Signature Sort V/S Existing Randomized 

Signature Sort 

The figure 5.2 displays the runtime performance comparison of improved randomized 

signature sort algorithm and existing randomized signature sort algorithm. The line 

for existing randomized signature sort algorithm grows apart from the improved one, 

indicating that for values ranging from 50 to 1000 the runtime of CPU for both the 

algorithms is almost close to each other but for values of n when becomes greater than 

1000, the difference between the lines grows greatly. This implies that for larger input 

sequence length the CPU runtime consumption for existing randomized signature sort 

is more than improved randomized signature sort.  
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Figure 5.2: Runtime comparison: Improved randomized signature sort v/s 

existing randomized signature sort 

The existing randomized signature sort divides integers into fields. Therefore, there is 

need to consider each field for comparison operation. That implies each integer will 

be considered for comparison as many time as the number of fields, which is extra 

overhead. In improved randomized signature sort, first task is of hashing which 

include hashing large number of bits to smaller number of bits. This means there is 

need to consider each integer for comparison for lesser number of times than existing 

randomized signature sort. 

Hence, the performance (in respect of CPU runtime) of improved randomized 

signature sort algorithm is better than existing randomized signature sort algorithm. 

5.1.1.3 Improved Randomized Signature Sort v/s Randomized Quick Sort  

Randomized quick sort has been considered for comparison of performance with 

improved randomized signature sort because of the reason that quick sort is also a 
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comparison based sorting technique. Quick sort makes 𝑂(𝑛 𝑙𝑜𝑔 𝑛) comparisons to 

sort the n integers. Quick sort is considered faster in practice than the other 

algorithms. It is widely used and considered best among all. Therefore, it‟s better to 

compare the improved randomized signature sort with quick sort to measure actual 

performance.   

The figure 5.3 depicts the runtime comparison between improved randomized 

signature sort and the traditional quick sort algorithm. In the starting when the input 

sequence length is small the performance for both the algorithms is almost close to 

each other. The line for improved randomized signature sort algorithm grows apart 

from the quick sort, indicating that for values ranging from 50 to 1000 the runtime of 

CPU for both the algorithms is almost close to each other but for values of n when 

becomes greater than 1000, the difference between the lines grows greatly. This 

implies that for larger input sequence length the CPU runtime consumption for 

improved randomized signature sort is more than quick sort. Hence, the performance 

(in respect of CPU runtime) of improved randomized signature sort algorithm is close 

to quick sort but not better than quick sort algorithm.  

In order to compare the running time performance of improved randomized signature 

sort with existing signature sort and quick sort, both algorithms were run for the same 

input and then the graph was plotted to see the difference. 

The input integers for both improved randomized signature sort and randomized quick 

sort are generated by using random function and stored in a file. Later that file is used 

as an input for all sorting algorithms. The output of each sorting technique is also 

stored in a file to avoid the loss of output sequence which happens when printing the 

sequence on console. Other benefit of doing so is that the output of each algorithm 

later can be compared to ensure the desired result. 
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Figure 5.3: Runtime comparison: Improved randomized signature sort v/s quick 

sort 

5.1.1.4 Overall Comparison 

In figure 5.4, the difference can be easily observed between the performance of 

existing randomized signature sort and improved randomized signature sort. The 

running times for the same input size sequence length are larger than the improved 

one. The performance of quick sort is slightly better than the improved randomized 

signature sort but improved randomized signature sort produces good and close 

results than the existing one. 

The figure 5.4 shows the overall comparison between all three algorithms. The graph 

clearly shows that the existing signature sort algorithm gives worst running time 

among all. Whereas, improved randomized signature sorting algorithm gives a 

running time near to quick sort. The running time of improved randomized signature 

sort algorithm is far better than the existing randomized signature sort algorithm. 
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Figure 5.4: Runtime comparison 

5.1.2  Memory Requirement 

Quick sort has a space complexity of 𝑂(𝑙𝑜𝑔 𝑛), even in the worst case, when it is 

carefully implemented. As discussed above, the randomized signature sort algorithm 

has been run on a variety of input sequences to compare its performance of memory 

requirement to quick sort.  

The memory used by the algorithm is measured by the Windows Task Manager. The 

algorithm is executed and the memory used is monitored and the maximum memory 

used by the algorithm during entire run is taken. Three runs are given and the 

maximum memory used is noted. The memory requirements are measured in KB 

(Kilo Bytes). Then in order to measure the memory consumed for different inputs, 

this can be done by looking the values corresponding to the process „javaw.exe‟ as the 

algorithms is run in Java language. 
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The table 5.2 listed the data collected of memory required for both quick sort as well 

as improved randomized signature sort: 

Table 5.2: Memory comparison details 

N Quick sort 
Improved randomized 

signature sort 

50 4192 4280k 

100 4252 4300k 

200 4768 4796k 

300 4864 4808k 

400 4884 4848k 

500 4908k 4948k 

600 4912k 4964k 

700 4940k 4988k 

800 4968k 5012k 

900 5024k 5036k 

1000 5052k 5060k 

2000 5244k 5284k 

4000 5644k 5692k 

The figure-5.5 shows the memory requirement plot for the improved randomized 

signature sort algorithm which depicts that the graph has a linear slope. The memory 

requirement increases directly proportionally to number of integers to be sorted. The 

memory used by improved randomized signature sort using hashing and bitwise 

operators, the tasks including packing, comparison and unpacking tasks takes 

relatively takes lesser memory than the existing randomized signature sort. 
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Thus, the improved randomized signature sort algorithm has a good and optimized 

space requirement. 

 

Figure 5.5: Memory requirement of improved randomized signature sort 

The above graph depicts that as the input sequence lengths increases the amount of 

memory required is also increases considerably. As the input size grows, the graph for 

improved randomized signature sort appears to take nearly linear memory size. 

The above figure 5.6 shows the performance of both improved randomized signature 

sort and the Quick sort.  As the input size grows, the graph for both algorithms also 

grows close to each other. The difference between the two is minimal thus we can say 

that existing randomized signature sort has been improved considerably depleting the 

large difference of performance compared to quick sort. 
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Figure 5.6: Comparison of memory requirement 

The above figure 4 shows the performance of both improved randomized signature 

sort and the quick sort.  As the input size grows, the graph for both algorithms also 

grows close to each other. The difference between the two is minimal thus it can be 

said that existing randomized signature sort has been improved considerably depleting 

the large difference of performance compared to quick sort. 

5.2 Results 

The implementation of algorithms is done in Java6.0 on Eclipse-IDE using OOP 

approach. 

First task for running improved randomized signature sort is to input the random 

numbers. The input integers are generated using random function and stored in a file.  
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Figure 5.7: Random input and signature created for improved randomized 

signature sort 

The number of input and the signatures formed corresponding to each integer is same 

i.e. signatures are created for each integer. 

The signature is of 𝑂(𝑙𝑜𝑔 𝑛) bit size where n is the number of inputs. The hash 

function is applied on integers to reduce their size by creating signatures of 𝑂(𝑙𝑜𝑔  𝑛) 

bit size. The hash function given as: 

ℎ𝑎 𝑥 =   (𝑎𝑥 𝑚𝑜𝑑 2𝑘) 2𝑘−𝑙   
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Where, 𝑘 is the number of bits in the input integer, 

      𝑙 is the number of bits in the signature which is 𝑂 𝑙𝑜𝑔𝑛 . 

      𝑎 is randomly chosen between zero and 2𝑘 .   

This function will take 𝑂 𝑛  time. 

In figure 5.8, there are two more output windows. One consisting of the words created 

and second window displays the sorted output.  

If w is word size of the machine, 𝑠𝑏 is the number of bits in the signature, 𝑤𝑙 is the 

word length, 𝑚 is the number of words, 𝑙 is the number of signatures in a word and 𝑛 

is the number of input integers then: 

 𝑙 = 𝑤𝑙 𝑠𝑏  

𝑚 = 𝑐𝑒𝑖𝑙(𝑛/𝑙) 

There will 𝑂(𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 log 𝑛) number of words be created overall. The word 

formation phase will take 𝑂(𝑛) time. 

Later, Comparison sorting is performed on words in order to get the sorted result.  

This is the phase where actual comparison will occur, which will result in sorting. 

And lastly unpacking is done to get back the original input data corresponding to 

signatures. This will yield the final sorted output as shown in the figure 5.8. 
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Figure 5.8: Words formed and sorted output of improved randomized signature 

sort 

Therefore, improved randomized signature sort can sort n integers in 𝑂(𝑛) expected 

time using linear space with better performance. 
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Chapter- 6 

Conclusion and Future Scope 

 

This chapter summarizes and evaluates the contributions made by thesis, and 

speculates on fruitful avenues for future work in this area. 

6.1 Conclusion 

The comparison-base model is an elegant and general framework in which to study 

sorting problems and 𝑂(𝑛 𝑙𝑜𝑔 𝑛) complexity of sorting is one of the tenets of 

computer science. However many sorting problems of considerable interest can be 

cast as integer sorting problems. The complexity of integer sorting on word RAM- 

like model therefore is of great practical and theoretical significance. A fundamental 

question therefore is: How fast n integers can be sorted on a w-bit machine? 

This thesis described and demonstrated improved randomized signature sort which 

performs integer sorting and runs under the word RAM model. This improved 

randomized signature sort shows better performance than existing randomized 

signature sort. The existing randomized signature sort  which was given in 1988, and 

then 1995 was originally an idea of Arne Andersson [1] but still today many 

researchers are working on the topic to achieve a new efficient comparison based 

sorting algorithm as sorting is one of the challenging task.  There are few completely 

new ideas in improved version of signature sort: Like new technique of packing 

which performs better mechanism to handle varying signature bit size that to be 

accommodated in the word of limited size. Secondly the implementation mechanism 

that holds efficient algorithm and faster way to run it with use of bitwise operators. 

These bitwise operators are considered to run faster than any other operators like 

addition, subtraction and so on. The use of bitwise operators and hashing has 

improved the performance of sorting algorithm significantly. 
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Apart from using the same packed sorting algorithm developed by Paul and Simon 

[16] for packing signatures into word and sorting, useful algorithm can be developed 

which deals with signature formation and packing of them into word in a more faster 

way. 

The resultant algorithm after implementation provides more efficient improved 

randomized signature sort, which is not only stable but better in performance. The 

algorithm is designed in a way that it becomes easy to implement as well as lesser 

complex. The implementation of algorithm gives 𝑂(𝑛) expected time which uses only 

linear space. The actual running time of this variant is comparatively very low than 

existing signature sort.  

Testing has been performed to measure the difference in the performance. And in 

order to measure its efficiency randomized quick sort has been chosen. Quick sort 

makes 𝑂(𝑛 𝑙𝑜𝑔 𝑛) comparisons to sort the n integers and is considered faster in 

practice than the other algorithms. It is widely used and considered best among all. 

Therefore, it‟s better to compare the improved randomized signature sort with quick 

sort to measure actual performance. The testing concluded that though randomized 

quick sort is better than improved randomized signature sort but the difference is so 

close that can be overcome.  

For same, large input sequence length, CPU run-time is far less in case of improved 

randomized signature sort as compared to existing randomized signature sort. And 

similar result has been observed in case of space requirement. Thus, clearly improved 

signature sort is better than existing one.  

With new algorithm to perform randomized signature sort, number of comparisons 

also have been reduced as there is no need to consider each integer for comparison for 

lesser number of time than existing randomized signature sort. As in the existing one, 

integers were divided into fields and each field had to be considered for comparison 

operation, which overall acted like an overhead on the algorithm. Hence by reducing 

the number of comparison to be performed, algorithm for improved randomized 

signature sort runs more efficiently. 
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6.2 Future scope 

There are many interesting avenues to explore for future work. The most important 

issue to address will be algorithms consisting of efficient phases that result in faster 

computational speed. Also to achieve such an algorithm for the signature sort, that can 

sort n integers for all word lengths. 

Unpacking also calls for new techniques like reverse hash function. Reverse hash 

function can make it faster as in order to retain the sorted list, there is no need to 

maintain ranks or indexing would be required. This task might be tedious but very 

useful. 

Despite its excellent asymptotic expected runtime of 𝑂(𝑛), Signature sort performs 

poorly in practice because of most machines‟ limited word size and because of the 

very large constants.  Therefore, an algorithm can be designed which has no limitation 

associated with limited word-size. It should work for all word lengths and whole task 

to be accomplished in linear expected time and lesser complexity. 

Research also raises some theoretical questions to be answered like to find tight 

bounds on deterministic integer sorting. Can the performance of signature sort be 

matched by deterministic algorithm? Signature sort sorts n integers in 𝑂(𝑛) expected 

time with a word length 𝑤 =  𝑂( 𝑙𝑜𝑔 𝑛) but how well this performs in case when 

𝑤 ≥ 𝑙𝑜𝑔𝑛2+𝜖   for arbitrary 𝜖 > 0. 
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