
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Nano Communication Networks 2 (2011) 141–149

Contents lists available at SciVerse ScienceDirect

Nano Communication Networks

journal homepage: www.elsevier.com/locate/nanocomnet

Modelling and analysis of spiking neural P systems with anti-spikes
using Pnet lab
Venkata Padmavati Metta a,∗, Kamala Krithivasan b, Deepak Garg c

a Bhilai Institute of Technology, Durg, India
b Indian Institute of Technology, Chennai, India
c Thapar University, Patiala, India

a r t i c l e i n f o

Article history:
Received 24 March 2011
Received in revised form 29 May 2011
Accepted 13 June 2011
Available online 24 June 2011

Keywords:
Spiking neural P system with anti-spikes
Petri net
Pnet Lab
Modelling

a b s t r a c t

Petri Nets are promising methods for modelling and simulating biological systems.
Spiking Neural P system with anti-spikes (SN PA systems) is a biologically inspired
computing model that incorporates two types of objects called spikes and anti-spikes thus
representing binary information in a natural way. In this paper, we propose amethodology
to simulate SN PA systems using a Petri net tool called Pnet Lab. It provides a promising
way for SN PA systems because of its parallel execution semantics and appropriateness
to represent typical working processes of these systems. This enables us to verify system
properties, system soundness and to simulate the dynamic behaviour.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Spiking neural P systems (shortly called SN P systems),
introduced in [3] as a variant of P systems [10], are
mathematical models inspired by the neurobiological
behaviour of neurons sending electrical pulses of identical
voltages called spikes to neighbouring neurons.

An SN P system consists of a set of neurons placed in
the nodes of a directed graph with each neuron having
spiking and forgetting rules. The rules involve the spikes
present in the neuron in the form of occurrences of a
symbol a. The application of spiking rules transfer spikes
to neighbouring neurons along the arcs of the graph (they
are called synapses), whereas the forgetting rules simply
forget some spikes present in the neuron.

In a standard SN P system there are only one type
of objects called spikes which are moved, created and
destroyed but never modified into another form. An SN
P system with anti-spikes (shortly called SN PA system)

∗ Corresponding author. Tel.: +91 7882358392; fax: +91 7882358392.
E-mail addresses: vmetta@gmail.com (V.P. Metta), kamala@iitm.ac.in

(K. Krithivasan), deep108@yahoo.com (D. Garg).

introduced in [7], is a variant of an SN P system consisting
of two types of objects, spikes (denoted as a) and anti-
spikes (denoted as a). The inhibitory impulses/spikes are
represented using anti-spikes. The anti-spikes behave in
a similar way as spikes by participating in spiking and
forgetting rules. They are produced from usual spikes by
means of usual spiking rules; in turn, rules consuming anti-
spikes can produce spikes or anti-spikes (here we avoid
the rule anti-spike producing anti-spike). Each neuron in
the system consists of an implicit annihilation rule of the
form aa → λ; if an anti-spike and a spike meet in a
given neuron, they annihilate each other. This rule has the
highest priority and does not consume any time. So at any
instant of time, a neuron in an SN P systemwith anti-spikes
can have spikes or anti-spikes but not both.

The initial configuration of the system is described as
initial number of spikes or anti-spikes present in each
neuron. The SN PA system evolves in a synchronous
fashion, meaning that a global clock is assumed and in
each time unit all neurons work in parallel with each
neuron which can use a rule should do it, but using only
one rule at a time (sequential locally). Using the rules, we
can define transitions among configurations. A sequence

1878-7789/$ – see front matter© 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.nancom.2011.06.002



Author's personal copy

142 V.P. Metta et al. / Nano Communication Networks 2 (2011) 141–149

of transitions among configurations, starting from initial
configuration is called a computation. A computation halts
if it reaches a configuration where no rule can be used.
With any computation whether halting or not together
with output produced in such a case, yielding notions of
functionality and computational power of SN PA systems
including various aspects of computing.

It is extremely important to simulate these models
to portray the system behaviour. Such models can shed
insight into complex processes and suggest new directions
for research. Scientists can study and analyse such
models to make predictions about the behaviour of the
system under different conditions and to discuss novel
relationships among the different components of a system.
The ability to predict system behaviour with amodel helps
to evaluate model completeness as well as improve our
understanding of the system.

A modelling methodology that is especially tailored for
representing and simulating concurrent dynamic systems
is Petri Nets. An advantage of Petri nets is that they
have a visual representation and simulation that facilitates
user comprehension. Petri Net tools enable users to
verify system properties, verify system soundness, and to
simulate the dynamic behaviour.

Different variants of P systems are translated into
Petri nets to complement the functional characterization
of their behaviour. In [5,4], Petri nets with localities
were introduced to represent some variants of membrane
systems. In [8,9], SN P systems with delay and SN P
systems with anti-spikes are translated into new variants
of Petri net models. However, all these new variants of
Petri nets typically lack the tools for building models, for
executing and observing simulation experiments. In [1],
a tool for simulating a simple and extended SN P system
is introduced that yields only the transition diagram of a
given system in a step-by-step mode and it lacks step-
by-step graphical simulation of the system. Spiking neural
P systems with anti-spikes are new variants of SN P
systems. We studied the languages generated by the SN P
systems with anti-spikes in [6] and proved that some of
the languages that cannot be generated using standard SN
P systems can be generated using SN P systems with anti-
spikes but no tools are available to simulate these variants.

This paper introduces the direct translation of standard
SN PA systems into Petri net models that can be simulated
using existing Petri net tools. As the procedure is direct, it
involves less complexity in translation and also using the
notions and tools already developed for Petri nets, one can
describe the internal process occurring during a computa-
tion in the SN PA system in a graphical way. Perhaps the
greatest advantages of Petri nets are a solid mathematical
foundation and the large number of techniques being de-
veloped for their analysis. These include reachability anal-
ysis, invariant analysis (a technique using linear algebra),
transformations (including reductions) preserving desired
properties, structure theory and formal language theory.
We considered Pnet Lab—a Java based simulation tool for
Petri nets to analyse the SN P systems. Pnet Lab allows the
parallel firing of all enabled transitions after resolving the
conflicts that can efficiently simulate the parallel use of

rules in all neurons in each step. It also allows the user de-
fined guard function that can encode the regular expres-
sion associated with each rule. Last but not least, Pnet Lab
has the advantage that it is extremely light-weight and be-
ing implemented in Java it is platform independent.

This paper is organized as follows. We start with
Section 2 by giving brief introduction about SN PA system.
In Section 3, we discuss the Petri net model considered
for translations. Section 4 gives a brief introduction about
Pnet Lab. Using these definitions as basis in Section 5, we
translate an SN PA system into an equivalent Petri net
model that can be simulated using Pnet Lab. Section 6
gives analysis results for the SN PA system considered in
Section 2 through Pnet Lab.

1.1. Notation

We recall here a few definitions and notations related
to formal languages and automata theory.

Σ is a finite set of symbols called alphabet. A string w

over Σ is a sequence of symbols drawn from Σ . λ denotes
the empty string.Σ∗ is the set of all string overΣ .Σ∗

−{λ}

is denoted by Σ+. The length of a string w is denoted by
|w|. A language L over Σ is a set of strings over Σ .

Let the alphabet Σ be the set {a1, . . . , an}. The
letter distribution, φ(w), of a Σ-word w is the n-tuple
⟨N1, . . . ,Nn⟩ with Ni the number of occurrences of ai in w.
The Parikh set, φ(L), of a Σ-language L is {φ(w)|w ∈ L}.

A language L ⊆ Σ∗ is said to be regular if there is
a regular expression E over Σ such that L(E) = L. The
regular expressions are defined using the following rules.
(i) φ, λ and each a ∈ Σ are regular expressions. (ii) if E1, E2
are regular expressions over Σ , then E1 + E2, E1E2 and E∗

1
are regular expressions over Σ , and (iii) nothing else is a
regular expression over Σ . With each regular expression
E, we associate a language L(E).

When Σ = {a} is a singleton, then the regular
expression a∗ denotes the set of all strings formed using
a. i.e. the set


ϵ, a, a2, a3, . . .


. The positive closure a+

=

a∗
− {λ}. If Σ is a singleton then the Parikh set of the

language denoted by regular expression E over Σ, L(E) is
{|w| | w ∈ L(E)}.

A multiset over a set X is a function m : X → N =

{0, 1, 2, . . .}. Multisetm is empty if there are no x such that
x ∈ m by which we mean that x ∈ X and m(x) ≥ 1. The
cardinality of m is |m| = Σx∈Xm(x). For two multisets m
andm′ over X , the summ+m′ is the multiset given by the
formula (m + m′)(x) = m(x) + m′(x) for all x ∈ X , and if
k ∈ N then k.m is the multiset given by (k.m)(x) = k.m(x)
for all x ∈ X . We denote m′

≤ m whenever m′(x) ≤ m(x)
for all x ∈ X , and if m′

≤ m, then the difference m − m′ is
m(x) − m′(x) for all x ∈ X .

A multiset over X may be represented as a string of
elements from X; for example, aaaaa = a3a2 (three
occurrences of as and two occurrences of a) denotes the
multiset m over X = {a, a} such that m(a) = 3, and
m(a) = 2. The empty string (multiset) will be denoted
by λ.



Author's personal copy

V.P. Metta et al. / Nano Communication Networks 2 (2011) 141–149 143

2. Spiking neural P system with anti-spikes

First we recall the definition of the SN P system with
anti-spikes (or SN PA system).

Definition 2.1 (SN P System with Anti-Spikes). Mathemat-
ically, we represent a spiking neural P system with anti-
spikes of degreem ≥ 1, in the form

Π = (O, σ1, σ2, σ3, . . . , σm, syn, i0), where

1. O = {a, a} is the alphabet. a is called spike and a is called
anti-spike.

2. σ1, σ2, σ3, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m, where

(a) ni is themultiset of spikes or anti-spikes contained by
the neuron.

(b) Ri is a finite set of rules of the following two forms:
i. E/br → b′ where E is a regular expression over

a or a, while b, b′
∈ {a, a}, and r ≥ 1.

ii. br → λ, for some r ≥ 1, with the restriction that
br ∉ L(E) for any rule E/br → b′ of type (1) from
Ri;

3. syn ⊆ {1, 2, 3, . . . ,m} × {1, 2, 3, . . . ,m} with (i, i)
∉ syn for 1 ≤ i ≤ m (synapses among neurons);

4. i0 ∈ {1, 2, 3, . . . ,m} indicates the output neuron.

The rules of type E/br → b′ are spiking rules, and they
are possible only if the neuron contains nb’s such that bn ∈

L(E) and n ≥ r . When neuron σi sends a b, it is replicated
in such a way that one b′ is sent to all neurons σj such
that (i, j) ∈ syn. The rules of type br → λ are forgetting
rules; r number of b′s are simply removed (‘‘forgotten’’)
when applying. As in the case of spiking rules, the left-
hand side of a forgetting rule must ‘‘cover’’ the contents of
the neuron, that is, as → λ is applied only if the neuron
contains exactly s spikes.

There is an additional fact that a and a cannot stay
together, so annihilate each other. If a neuron has either
objects a or objects a, and further objects of either type
(maybe both) arrive from other neurons, such that we end
with ar and as inside, then immediately an annihilation
rule aa → λ, which is implicit in each neuron, is applied
in a maximal manner, so that either ar−s or as−r remain for
the next step, provided that r ≥ s or s ≥ r , respectively.
This mutual annihilation of spikes and anti-spikes takes no
time and that annihilation rule has priority over spiking
and forgetting rules, so the neurons always contain either
only spikes or anti-spikes.

lhs(v) and rhs(v) give the multiset of spikes/anti-
spikes present in the left- and right-hand sides of rule
v respectively. As in [7], we avoid using rules ac → a,
but not the other three types, corresponding to the pairs
(a, a), (a, a), (a, a). If E = br then we will write it in the
simplified form br → b′.

The standard SN P systemwith delay works in a similar
way as that of the SN PA system but deals with only
one type of object called spike (a) and so there exists
no annihilation rules. The spiking rules have a delay
associated with them and are of the form E/ar −→ a;
t . When neuron σi uses the rule, its spike is replicated in

such a way that one spike is sent to all neurons σj such
that (i, j) ∈ syn, and σj is open at that moment. If t = 0,
then the spikes are emitted immediately, if t = 1, then
the spikes are emitted in the next step and so on. In the
case t ≥ 1, if the rule is used in step d, then in step
d, d + 1, d + 2, . . . , d + t − 1, the neuron is closed and
it cannot receive new spikes (if a neuron has a synapse to a
closed neuron and sends spikes along it, then the spikes
are lost, biology calls this the refractory period). In step
t + d, the neuron spikes and becomes open again, hence
can receive spikes (which can be used in step t+d+1). If a
neuron σi fires and either it has no outgoing synapse, or all
neurons σj such that (i, j) ∈ syn are closed, then the spike
of neuron σi is lost; the firing is allowed, it takes place, but
results in no new spikes. In an SN P system without delay
all the rules have zero delay. Since in this paper we always
deal with systemswithout delay, the delay (t = 0) is never
specified in the rules.

Definition 2.2 (Configuration). The configuration of the
system is described C = ⟨n1, n2, . . . , nm⟩ where ni is
the multiset written in the form ni = axay, where x is
the number of spikes and y is the number of anti-spikes
present in neuron σi. Because a neuron always contains
spikes or anti-spikes, either ni(a) = 0 or ni(a) = 0.

A global clock is assumed in the SN P system and in
each time unit each neuron which can use a rule should
do it (the system is synchronized), but the work of the
system is sequential locally: only (at most) one rule is used
in each neuron. The rules are used in the non-deterministic
manner, in a maximally parallel way at the level of the
system; in each step, all neurons which can use a rule of
any type, spiking or forgetting, have to evolve, using a rule.

Definition 2.3 (Vector Rule).We define a vector rule V as a
mappingwith domainΠ such thatV (i) = rij, rij is a spiking
or forgetting rule from Ri, i.e. |V (i)| = 0 or 1where 1 ≤ i ≤

m. If no rule is applicable from σi then V (i) = ri0. If a vector
rule V is enabled at a configuration C = ⟨n1, n2, . . . , nm⟩

then C can evolve to C ′
=


n′

1, n
′

2, . . . , n
′
m


(after applying

annihilation rules in each neuron in an exhaustive way),
where

n′

i = ni − lhs(V (i)) +

−
(j,i)∈syn

rhs(V (j)).

Definition 2.4 (Transition). Using the vector rule, we
pass from one configuration of the system to another
configuration, such a step is called a transition. For two
configurations C and C ′ of Π we denote by C

V
H⇒ C ′, if

there is a direct transition from C to C ′ in Π .
A computation of Π is a finite or infinite sequences

of transitions starting from the initial configuration, and
every configuration appearing in such a sequence is
called reachable. Note that the transition of C is non-
deterministic in the sense that there may be different
vector rules applicable to C, as described above.

A computation halts if it reaches a configuration where
no rule can be used. There are various ways of using such a
device [11].



Author's personal copy

144 V.P. Metta et al. / Nano Communication Networks 2 (2011) 141–149

a b

Fig. 1. SN P system with anti-spikes.

Example 2.1. Consider the graphical representation of an
SN P system with anti-spikes in Fig. 1(a), the neurons
are represented by nodes of a directed graph whose
arrows represent the synapses; an arrow also exits from
the output neuron, pointing to the environment; in each
neuron we specify the rules and the spikes present in the
initial configuration. It is formally denoted as

Π = ({a, a}, σ1, σ2, σ3, σ4, syn, 4), with
σ1 = (a3, {a3/a → a, a3 → a}),
σ2 = (a, {a → a}),
σ3 = (a, {a → a}),
σ4 = (a, {a → a, a → a}),
syn = {(1, 2), (2, 1), (1, 4), (4, 1), (1, 3), (3, 1)}.

We have four neurons, with labels 1, 2, 3, 4; neuron 4 is
the output neuron. Initially, neuron 1 has three spikes with
non-determinism between its first two rules and neurons
2, 3 and 4 have one spike each. The initial configuration of
the system is ⟨a3, a, a, a⟩.

The evolution of the system Π can be analysed on
a transition diagram as that from Fig. 1(b) because
the number of configurations reachable from the initial
configuration is finite, we can place them in the nodes of a
graph and between two nodes/configurations we draw an
arrow if and only if a direct transition is possible between
them. In Fig. 1(b), we have also indicated the rules used in
each neuronwith the following conventions; for each rij we
have written only the subscript ij; when a neuron i = 1, 2,
3, 4 uses no rule, we have written i0.

The functioning can easily be followed on this diagram,
so that we only briefly describe it. We start with spikes
in all neurons. Neuron 1 can behave non-deterministically
choosing one of the two rules. As long as neuron 1 uses
the rule a3/a → a, the computation cycles in the initial
configuration sending a spike to neurons 2, 3 and 4; neuron
4 uses its first rule and sends an anti-spike to environment
and neuron 1. Neurons 2 and 3 use their rules and send
a spike to neuron 1. So neuron 1 receives one anti-spike
and two spikes (and two spikes are already present in it),
after using the annihilation rule, the neuronwill have again
three spikes. Neurons 2, 3 and 4 will have one spike each.

If neuron 1 uses its second rule a3 → a, the three
spikes are consumed and an anti-spike is sent to other
three neurons. So neuron1will have one spike andneurons
2, 3 and 4 will have one anti-spike each, reaching the
configuration ⟨a, a, a, a⟩. In the next step neurons 1, 2
and 3 cannot fire and neuron 4 uses the rule a → a

sending a spike to environment and neuron 1, reaching the
configuration ⟨a2, a, a, λ⟩ and the system halts.

3. Petri net

A Petri [13] net is a bipartite graph with two kinds
of nodes, place nodes are represented with circles having
tokens and transition nodes are represented with bars or
boxes. The directed arcs connecting places to transitions
and transitions to places may be labelled with an integer
weight, but if unlabelled are assumed to have a weight
equal to 1. Now we introduce the class of Petri nets with
transitions having guards, to be used in the translation.

Definition 3.1 (Petri Net). A Petri net with guard is
represented by N = (P, T , A,W ,G,M0), where

P = {P1, P2, P3, . . . , Pm} is a finite, non-empty set of
places.
T = {T1, T2, T3, . . . , Tn} is a finite, non-empty set of
transitions.
A ⊆ (P × T ) ∪ (T × P) is a set of directed arcs
which connect places with transitions and transitions
with places.
W : A −→ N assigns weight W (f ) to elements of f ∈

A denoting the multiplicity of unary arcs between the
connecting nodes.
G : T −→ {true, false}, the guard function maps each
transition Ti to Boolean expression, which specifies an
additional constraint which must be fulfilled before the
transition is enabled.

The initial marking M0 = {n1, n2, . . . , nm} ∈ P , each ni is
the number of tokens initially associated with each place
Pi and m is the number of places in the net N .

A place Pi is an input (or an output) place of a transition
Tj iff there exists an arc (Pi, Tj) (or (Tj, Pi) respectively) in
set A. The sets of all input and output places of a transition
Tj are denoted by I(Tj) = {Pi : (Pi, Tj) ∈ A} and O(Tj) =

{Pi : (Tj, Pi) ∈ A} respectively. Similarly, the sets of
input and output transitions of a place Pi are denoted by
I(Pi) = {Tj : (Tj, Pi) ∈ A} and O(Pi) = {Tj : (Pi, Tj) ∈ A}

respectively. A placewithout any output transition is called
output place. Output place only receives tokens but does
not send any tokens to other places.

Definition 3.2 (Marking).Amarking (state) assigns to each
place Pi a non-negative integer k, we say that place Pi
is marked with k tokens. Pictorially we place k black
dots (tokens) in place Pi. A marking is denoted by M , an
m-vector where m is the total number of places. Sub
marking of a Petri net is the marking of some of its places.

The state or marking of Petri net is changed by the
occurrence of transition. When a transition is enabled, it
may be fired to remove a number of tokens fromeach input
place equal to the weight of the connecting input arc and
create a number of new tokens at each output place equal
to the weight of the connecting output arc.

Firing rules in the Petri net model are:

1. Transition Tj is enabled iff Tj satisfies the guard
condition and its every input place has at least as many
tokens as the weight of the input arcs,



Author's personal copy

V.P. Metta et al. / Nano Communication Networks 2 (2011) 141–149 145

M(Pi) ≥ W (Pi, Tj) ∀Pi ∈ I(Tj)
G(Ti) = true.

2. Upon firing the transition Tj removes number of tokens
from each of its input places equal to the weight of
the input arcs and deposits number of tokens into the
output places equal to the weight of output arcs.

Concurrency is also a concept that Petri net systems
represent in an extremely natural way. Two transitions are
concurrent at a given marking if they can be fired at the
same time, i.e. simultaneously. The set of all transitions
enabled by a marking M is denoted by E(M). When a
transition fires, a token is removed from each of its input
places and a token is added to each of its output places. This
determines a new marking in a net, a new set of enabled
transitions, and so on. An important concept in Petri nets
is that of conflict. Conflict occurs between transitions that
are enabled by the same marking, where the firing of one
transition disables the other. A major feature of net is that
they do not define in any way how and when a given
conflict should be resolved, leading to non-determinismon
its behaviour.

Definition 3.3 (Step). A step is a set U of transitions which
fires at amarkingM after resolving conflicts and is denoted
byM[U⟩. The input and output places of stepU are given by

INN U(p) =

−
t∈U

W (p, t) and

OUTN U(p) =

−
t∈U

W (t, p) for each p ∈ P.

A step U which is enabled at a markingM can be executed
leading to the marking M ′

= M + OUTN U(p) − INN U(p).
We denote this by M [U⟩M ′. A step U is a maximal step at
a markingM ifM [U⟩ and there is no transition t ′ such that
M


U + {t ′}


and for every place p ∈ P , transition t ∈ U, t

can only be executed if it satisfies the guard function.

A Petri net system N with maximal concurrency is such
that for each markings M and M ′ if there is a step U such
that M [U⟩M ′, then U is a maximal step. In this paper we
are considering only maximal concurrency semantics of
the Petri nets.

A computation of a Petri net N is a finite or infinite
sequences of executions starting from the initial marking
and every marking appearing in such a sequence is
called reachable. A major strength of Petri nets is their
support for the analysis of many properties and problems
associated with concurrent systems such as reachability,
boundedness and liveness. The firing of an enabled
transition will change the token distribution in a net
according to the transition. A sequence of firings will result
in a sequence of markings.

Coverability tree is a tree representation of all possible
markings with initial marking as the root node and nodes
as the markings reachable from M0 and arcs represent the
transition firing. A reachability graph is a graph where each
node represents a Petri net marking, with arcs connecting
eachmarkingwith all of its nextmarkings. The reachability
graph defines a net’s state space (i.e. the set of reachable
states). Reachability is a fundamental basis for studying

the dynamic properties of any system. A marking Mn is
reachable from initial marking M0 if a sequence of firings
that transforms M0 to Mn. The reachability problem for
Petri net is the problem of finding if a marking Mi is
reachable from the initial marking M0. Formally, a Petri
net with a given marking is said to be in deadlock if and
only if no transition is enabled in the marking. A Petri net
where no deadlock can occur starting froma givenmarking
is said to be live. A place-invariant (P-invariant) is a subset
of placeswhose total number of tokens remains unchanged
under any execution of the system. A transition-invariant
(T -invariant) is a multiset of transitions whose execution
in a certain order will leave the distribution of tokens
unchanged. Generally, Petri nets are analysed using tools
to study important behavioural properties of the system
like invariants, reachability, liveness, boundedness.

4. Pnet Lab

Pnet Lab tool provides interactive simulation, analysis
and supervision for Petri nets. It allows modelling and
analysis of coloured Petri Nets, place-transition nets,
timed/untimed. We can build an arc (guard) function
by combining the built in functions or using several
mathematical functions in accordance with the C/C++
syntax. This paper makes use of built in function ntoken(i)
that returns the number of tokens present in the place
pi. We can also write user defined guard functions. The
DFA for the regular expression E is translated into a user
defined guard function that enables a transition when the
number of spikes (in the form of sequence of a’s) present
in the neuron is in L(E). It also allows the firing of multiple
transitions in a single step and resolves conflicts.

Pnet Lab manages conflicts by using the following
resolution policies:
1. Predefined Scheduling order: PNet Lab assigns a static

priority to the transition in conflict, based on the order
in which they have been drawn;

2. Same firing rate: transition in conflict relation have the
same firing probability;

3. Stochastic firing rate: transition in conflict relation has
a firing probability defined a priori by the user.

For Petri net models, the computation of T–P-invariant,
minimal siphons and traps, pre-incidence, post-incidence
and incidence matrices and coverability tree is available. A
detailed manual about Pnet Lab can be found in [12]. This
paper makes use of built in functions of Pnet Lab.

5. SN PA system to Petri net

In this section, we propose a formalmethod to translate
SN PA systems into Petri nets suitable for simulation using
Pnet Lab.

Three places are used to represent each neuron.
The marking of the places P3i−2 and P3i−1 gives the
number of spikes and anti-spikes present in the neuron σi
respectively. The place P3i is added to allow at most one
transition to fire from each input place corresponding to
σi. P3m+1 and P3m+2 are the places corresponding to the
environment and shows the number of spikes and anti-
spikes sent out by the output neuron. Every spiking and
forgetting rule is one-to-one mapped to a transition in



Author's personal copy

146 V.P. Metta et al. / Nano Communication Networks 2 (2011) 141–149

T . Every annihilation rule in σi is represented with two
transitions Tia and Tib. Tia is fired if the number of spikes is
more than the number of anti-spikes, otherwise Tib is fired.
Regular expressions are translated into guard functions
which further control the firing of transitions.

In an SN PA system, the annihilation rule is applied
in each neuron after the application of spiking rules. To
simulate this behaviour of SNPA system, a place P3m+3 with
no tokens is introduced and all transitions that corresponds
to spiking rules are executed if place P3m+3 has no tokens.
This is implemented in Pnet Lab by adding a guard function
to each of these transitions that checks the number of
tokens in place P3m+3 and are fired if ntoken(P3m+3) = 0.
The outgoing arc of each of these transitions are connected
to the place P3m+3. The annihilation rules are applied if
any spiking rules are applied in the previous step so a
guard function ntoken(P3m+3) > 0 is added to each
transition corresponding to the annihilation rule. The place
P3m+3 is connected to the transition T0 which fires with
the annihilated transitions, clearing its contents and thus
allowing spiking transitions to fire in the next step.

Definition 5.1 (SN PA System to Petri Net). Let Π = (O, σ1,
σ2, σ3, . . . , σm, syn, i0) be an SN P system, then the
corresponding Petri net N LΠ

df
= (P, T , A,W ,G,M0),

where

1. P
df
= {P1, P2, . . . , P3m, P3m+1, P3m+2, P3m+3} is the set of

places.
2. T

df
= T1 ∪ T2 ∪ · · · Tm ∪ T0 where each group of

transitions Ti, 1 ≤ i ≤ m contains a distinct transition
Tik for every rule of rik ∈ Ri. For each annihilation rule
that is internally present in neuron σi, Ti contains two
transitions Tia and Tib.

3. add (P3i−2, Tia), (P3i−1, Tia), (P3i, Tia) and (Tia, P3i) to A
with
W (P3i−2, Tia) = ntoken(P3i−1),
W (P3i−1, Tia) = ntoken(P3i−1),
W (P3i, Tia) = 1 andW (Tia, P3i) = 1
G(Tia)

df
= (if ntoken(P3i−2) ≥ ntoken(P3i−1) and

ntoken(P3m+3) > 0 then return true else return false)
The execution of Tia consumes all tokens from its input
places and leaves ntoken(P3i−2) − ntoken(P3i−1) tokens
in place P3i−2.

4. add (P3i−2, Tib), (P3i−1, Tib), (P3i, Tib) and (Tib, P3i) to A
with
W (P3i−2, Tib) = ntoken(P3i−2),
W (P3i−1, Tib) = ntoken(P3i−2),
W (P3i, Tib) = 1 andW (Tib, P3i) = 1
G(Tib)

df
= (if ntoken(P3i−1) > ntoken(P3i−2) and

ntoken(P3m+3) > 0 then return true else return false)
5. add (i0,m + 1) to syn. This adds an arc from output

neuron to the environment.
for every place (i, j) ∈ syn do
for every transition Tik ∈ Ti do
add (P3i, Tik), (Tik, P3i) and (Tik, P3m+3) to A with arc
weight 1.
if rik is of the form E/ak → bwhere b = a or a or λ then
G(Tik)

df
= (if ntoken(P3i−2) ∈ Parikh set of L(E) and

ntoken(P3m+3) = 0 then return true else return false)

add (P3i−2, Tik) to Awith W (P3i−2, Tik) = k
if b = a then
add (Tik, P3j−2) to Awith W (Tik, P3j−2) = 1
else if b = a then
add (Tik, P3j−1) to Awith W (Tik, P3j−1) = 1
end if
else if rik is of the form E/ak → b′ where b′

= a or λ
then
G(Tik)

df
= (if ntoken(P3i−1) ∈ Parikh set of L(E) and

ntoken(P3m+3) = 0 then return true else return false)
add (P3i−1, Tik) to Awith W (P3i−1, Tik) = k
if b′

= a then add (Tik, P3j−2) to A and set
W (Tik, P3j−2) = 1
end if
end if
end for
end for
add (P3m+3, T0) to A with arc weight as ntoken(P3m+3).

6. for i = 1 tom, set
M0(P3i−2)

df
= ni(a)

M0(P3i−1)
df
= ni(a)

M0(P3i)
df
= 1.

To capture the very tight correspondence between the
SN PA system Π and Petri nets N LΠ , we introduce a
straightforward bijection between configurations ofΠ and
markings of N LΠ , based on the correspondence between
places and neurons.

Let C = ⟨n1, n2, . . . , nm⟩ be a configuration of an SN PA
system Π . Then the corresponding sub marking φ(C) of
N LΠ is given by φ(C)(P3i−2)

df
= ni(a) and φ(C)(P3i−1)

df
=

ni(a) for every place where 1 ≤ i ≤ m of N LΠ .
Similarly, for any vector ruleV = (r1j1 , r2j2 , . . . , rmjm) of

Π , we define an enabled step ξ(V ) of transitions of N LΠ

such that ξ(V )(Tij)
df
= rij for every Tij ∈ T and j ≠ a or b. It

is clear that φ is a bijection from the configurations ofΠ to
themarkings of N LΠ , and that ξ is a bijection from vector
rules of Π to enabled steps of N LΠ .

Now we can formulate a fundamental property con-
cerning the relationship between the dynamics of the SN
PA system Π and that of the corresponding Petri net:

C
V

H⇒ C ′ if and only if φ(C)[ξ(V )⟩[H⟩φ(C ′)

where H is an immediate step and may contain Tia or Tib ∈

T for every 1 ≤ i ≤ m and transition T0.
Since the initial configuration ofΠ corresponds through

φ to the initial sub marking of N LΠ , the above immedi-
ately implies that the computations ofΠ coincide with the
locally sequential and globally maximal concurrency se-
mantics of the net N LΠ .

It can be observed that the structure of neurons in
Π is used in the definitions of the structure of the net
N LΠ (i.e., in the definitions of places, transitions and the
weight function). Let C be a configuration of Π and there
is a vector rule V enabled at C reaching a configuration
C ′. As there is a mapping between configuration and
markings, φ(C) is marking of net N LΠ corresponding to
the configuration C of Π . There is a one-to-one mapping
between the rules in the SN PA system and transitions in
net. So there exists a step [ξ(V )⟩ enabled at the marking
φ(C). After the execution of the steps [ξ(V )⟩ and H , the
system reaches the configurationφ(C ′).We can prove only
if part in the similar way. So the evolution of the Petri net
N LΠ is same as the evolution of the SN PA system Π .



Author's personal copy

V.P. Metta et al. / Nano Communication Networks 2 (2011) 141–149 147

Fig. 2. Petri net model for SN PA system in Fig. 1.

6. Simulation with Pnet Lab

We explain the simulation with an example. Fig. 2
shows the Petri net model for the SN P system in
Example 2.1 modelled using Pnet Lab. Each transition
is named as tl − Tik, where tl is the transition name
given by the tool and Tik is the transition name given
as per methodology discussed in the previous section.
We can also find the invariants. In [2], it is proved that
finding invariants enables us to establish the soundness
and completeness of the system. The tool also outputs the
coverability tree which is not shown in the figure.

Fig. 3 gives the output of the step-by-step simula-
tion of the model in Pnet Lab. p1 and p2 are places
corresponding to neuron σ1 for storing spikes and anti-
spikes respectively. The symbol {1} in the marking col-
umn indicates the presence of a token in that place.
so the combined marking of the places p1 and p2 gives
the configuration of the first neuron. If we consider
the sub marking i.e. (p1, p2) for neuron 1, (p4, p5) for
neuron 2, (p7, p8) for neuron 3 and (p10, p11) for neu-
ron 4, the initial marking is ⟨(3, 0), (1, 0), (1, 0), (1, 0)⟩
which is similar to the initial configuration of the SN
PA system in Fig. 1. At this marking, after the firing of
transitions t5 − T21, t6 − T31, t8 − T12, t9 − T41
(corresponding to rules 21,31,12,41 of Π ), the system
reaches the next submarking ⟨(2, 1), (0, 1), (0, 1), (0, 1)⟩.
As the number of tokens in place p15 is greater than
zero, the transitions t1 − T1a, t12 − T0, correspond-
ing to the annihilation rules will be fired in the next
step again reaching the same configuration as that of the
SN P system, i.e. ⟨(1, 0), (0, 1), (0, 1), (0, 1)⟩ (shown in
pass.2 of Fig. 3). The transition enabled at this mark-
ing is t10–T42 followed by the transitions corresponding
to annihilation rules t12–T0 reaching the final marking
⟨(2, 0), (0, 1), (0, 1), (0, 0)⟩. We can observe from Fig. 3
that the configurations reachable from initial configuration
of the SN P system are same as the submarkings reachable
in the corresponding Petri net model from the initial sub

marking. So we conclude that the Petri net model in Fig. 2
accurately simulates the working of the SN P system Π .

6.1. The behavioural properties of SN PA systems derived from
Petri nets

Many useful behavioural properties such as reacha-
bility, boundedness, liveness of Petri nets have been in-
vestigated. We also introduce these properties for SN PA
systems.

For an SN PA system, we define structural analysis
which can identify properties that are conserved during
execution of the modelled system. It may provide insights
to the system. Such properties include the following:

1. Boundedness: Checking that there is no infinite accumu-
lation of tokens in a place. This may correspond to an
accumulation of spikes at a particular neuron.

2. T -Invariants: Identifying a set of transitions that have
to fire from some initial marking to return the Petri net
to that marking. T -invariants indicate the presence of
cycles that are in a state of continuous operation.

3. Reachability: Deciding whether a certain marking
(state) is reachable from another marking. This type
of analysis can be used to determine whether certain
outcomes are possible, given a modelled net and an
initial marking (initial state), or to determine whether
certain configurations are reachablewhen specific rules
are inhibited.

4. Terminating: the sequence of transitions between
configurations of a given SN P system is finite, i.e., the
computation of the SN PA system always halts.

5. Deadlock-free: each reachable configuration enables a
next step.

6. Liveness: it is deadlock-free and there is a sequence
containing steps.

Theorem 1. If the Petri net for a given SN PA system Π is
terminating, then the SN PA system Π is terminating.



Author's personal copy

148 V.P. Metta et al. / Nano Communication Networks 2 (2011) 141–149

Fig. 3. Report of markings in the steps of simulation in Pnet Lab.

Proof. If the SN PA system is not terminating, according
to the definition of termination for SN PA systems, there
exists an infinite step sequence. When the SN PA system is
encoded by the Petri net, there also exists an infinite step
sequence. Every step is one-to-one mapped to a transition
in the Petri net, so the sequence of transition in the Petri
net is not finite. Thus, this Petri net is not terminating. �

Theorem 2. If the Petri net for a given SN P system Π is
deadlock-free, then the SN P system Π is deadlock-free.

Theorem 3. If the Petri net for a given SN PA system Π has
liveness, then the SN PA system Π has liveness.

Theorem 4. If the Petri net for a given SN PA system Π is
bounded, then the SN PA system Π is bounded.

Proof. The proofs of Theorems 2–4, are the same as that
for Theorem 1. �

Conclusion

SN PA systems are biologically inspired computing
models that involve the use of two types of objects
called spikes and anti-spikes and thus model the systems
working with binary data in a very natural way. A
formalism to study these models and validating them is
needed. The Petri net tool called Pnet lab allows the parallel
execution of transitions. It enables us tomodel the globally
parallel firing semantics of all SN PA systems. They also
allow the definition of functions on arcs and transitions.
With numerous functionalities available with Pnet lab, we
succeeded in modelling the entire work of SN PA systems.
At present the algorithms only enable the simulation of
different variants of SN P systems without delay. We are
therefore interested in developing a method of validation
and verification for SN P systems with delay.

Acknowledgements

We are grateful to Marian Gheorghe for many inspiring
discussions. We would also like to thank the referees for
their helpful comments.

References

[1] M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, D. Ramírez-Martínez, A
software tool for verification of spiking neural P systems, Natural
Computing 7 (4) (2008) 485–497.

[2] O.H. Ibarra, M.J. Pérez-Jiménez, T. Yokomori, On spiking neural P
systems, Natural Computing 9 (2) (2010) 475–491.

[3] M. Ionescu, Gh. Păun, T. Yokomori, Spiking neural P systems,
Fundamenta Informaticae 71 (2006) 279–308.

[4] J. Kleijn, M. Koutny, A Petri net model for membrane system with
dynamic structure, Natural Computing 8 (4) (2009) 781–796.

[5] J. Kleijn, M. Koutny, G. Rozenberg, Process semantics for membrane
system, Journal of Automata, Languages and Combinatorics 11
(2006) 321–340.

[6] K. Krithivasan, V.P. Metta, D. Garg, On string languages generated by
spiking neural P systems with anti spikes, International Journal of
Foundations of Computer Science 22 (1) (2011) 15–27.

[7] P. Linqiang, Gh. Păun, Spiking neural P systems with anti-spikes,
International Journal of Computers, Communications & Control 4
(2009) 273–282.

[8] V.P. Metta, K. Krithivasan, D. Garg, Modeling spiking neural
P systems using timed Petri nets, NaBIC, IEEE Xplore, 2009,
doi:10.1109/NABIC.2009.5393490.

[9] V.P. Metta, K. Krithivasan, D. Garg, Representation of spiking neural
P systems with anti-spikes through Petri nets, in: the Proceedings of
BIONETICS, LNICST, Springer (2010) (forthcoming).

[10] Gh. Păun, Computing with membranes, Journal of Computer and
System Sciences 61 (2000) 108–143.

[11] Gh. Păun, Spiking neural P systems used as acceptors and
transducers, in: CIAA, in: LNCS, vol. 4783, Springer, 2007, pp. 1–4.

[12] Pnet Lab: a Petri net tool.
http://www.automatica.unisa.it/PnetLab.html.

[13] W. Reisig, G. Rozenberg, Lectures on Petri nets, in: LNCS, vols. 1491,
1492, Springer-Verlag, Berlin, 1998.

Venkata Padmavati Metta received her MCA
in Computer Applications from MANIT, Bhopal
and currently pursuing her Ph.D. in Computer
Science and Engineering at Thapar University.
She has 10 years teaching experience and is
an Associate Professor at Bhilai Institute of
Technology, India. Her main research fields
are formal language theory, algorithms and
membrane computing.



Author's personal copy

V.P. Metta et al. / Nano Communication Networks 2 (2011) 141–149 149

Kamala Krithivasan received her Ph.D. from
the University of Madras, and she joined the
Indian Institute of Technology Madras (IITM)
in 1975. With more than 30 years of teach-
ing and research experience at IITM, she is cur-
rently Professor at the Department of Computer
Science and Engineering, in which she served
as Chairperson during 1992–1995. Her research
interests include formal language theory and
unconventional models of computing like DNA
computing, membrane computing and discrete

tomography. She has published a large number of research papers, lec-
tured at many universities and gave numerous invited talks at recognized
international conferences. A recipient of the Fulbright fellowship in 1986,

Professor Kamala is also a fellow of the Indian National Academy of Engi-
neering.

Deepak Garg has done his Ph.D. in the area
of efficient algorithm design. He has 11 years
teaching experience and is currently Professor
at Thapar University, India. His active research
interests are designing efficient algorithms,
bioinformatics and knowledge management. He
started his career as a Software Engineer in IBM
Corporation Southbury, USA.


