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Abstract 

 

The traditional algorithm for integer sorting gives a lower bound of 𝑂(𝑛 𝑙𝑜𝑔 𝑛) 

expected time without randomization and 𝑂(𝑛) with randomization. Recent researches 

have optimized lower bound for deterministic algorithms for integer sorting. This 

thesis will present an idea to achieve the complexity of deterministic algorithm for 

integer sorting in 𝑂 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 log log log 𝑛  expected time and linear space which 

is easy to implement and very simple enough. The idea will use Andersson’s 

exponential tree to perform the sorting. The exponential tree can’t be used as it is for 

this idea, so the modification in the exponential tree is necessary. Integers will be 

passed down to exponential tree one at a time but limit the comparison required at 

each level. The total number of comparison for any integer will be 

𝑂 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 log log  𝑛   i.e. total time taken for all integers insertion will 

be  𝑂  𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 log log  𝑛 . 

The algorithm presented in this thesis can be compared with the result of Fredman and 

Willard that sorts n integers in 𝑂 𝑛 𝑙𝑜𝑔𝑛 / 𝑙𝑜𝑔 𝑙𝑜𝑔𝑛  time in linear space. It can also 

be compared with result of Raman that sorts n integers in 𝑂 𝑛  log 𝑛 log log 𝑛  time 

in linear space and also with result of Andersson’s time bound of  𝑂 𝑛  log 𝑛 . The 

algorithm can also be compared with Yijei Han’s result of 

𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)  expected time for deterministic linear space integer 

sorting. 

The implementation of the algorithm is also given and later performance is compared 

to traditional deterministic algorithms. 

  



 

Page | iv  
 

Table of Contents 

 

Certificate ................................................................................................................ ( i ) 

Acknowledgement .................................................................................................. ( ii ) 

Abstract ................................................................................................................. ( iii ) 

Table of Contents .................................................................................................. ( iv ) 

List of Figures ....................................................................................................... ( vi ) 

List of Tables ........................................................................................................ ( vii ) 

Chapter-1: Introduction ............................................................................................ 1 

1.1. Exponential Tree .............................................................................................. 2 

1.1.1. Growth .................................................................................................. 3 

1.2. Complexity of Exponential Tree ...................................................................... 4 

1.2.1. Insertion ................................................................................................ 4 

1.2.2. Balancing .............................................................................................. 5 

1.3. Sorting Using Exponential Tree ....................................................................... 5 

1.4. Deterministic Algorithms ................................................................................. 6 

1.5. Conservative and Non-Conservative Algorithms ............................................. 6 

1.6. Structure of Thesis ............................................................................................ 7 

Chapter-2: Literature Review ................................................................................... 8 

2.1. Fusion Tree ..................................................................................................... 10 

2.2. Sorting in 𝑂 𝑛  log 𝑛  Expected Time ......................................................... 10 

2.3. Sorting in 𝑂(𝑛(log log 𝑛)2) Expected Time .................................................. 12 

2.4. Other Fast Deterministic Algorithms ............................................................. 16 

2.4.1. Yijie Han’s Concept of Sorting Integers in (𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) .............. 16 

Chapter-3: Problem Statement ............................................................................... 18 



 

Page | v  
 

Chapter-4: Improved Exponential Tree Integer Sorting Algorithm Using Node 

Growth .................................................................................................. 19 

4.1. Modified Exponential Tree ............................................................................ 19 

4.1.1. Growth ................................................................................................ 22 

4.1.2. Balancing ............................................................................................ 23 

4.2. Insertion .......................................................................................................... 24 

4.3. Binary Search ................................................................................................. 26 

4.4. Trace ............................................................................................................... 27 

Chapter-5: Testing and Results ............................................................................... 29   

5.1. Testing ............................................................................................................ 29 

5.1.1. Running Time ..................................................................................... 30 

5.1.1.1. Analysis of Exponential Tree Sorting Running Time ............ 31 

5.1.1.2. Exponential Tree Sorting v/s Binary Tree Sorting ................. 31 

5.1.1.3. Exponential Tree Sorting v/s Quick Sort ............................... 32 

5.1.1.4. Running Time Results ............................................................ 33 

5.1.2. Space Requirement ........................................................................................ 34 

5.1.2.1. Analysis of Exponential Tree Sorting Space Requirement .... 35 

5.1.2.2. Exponential Tree Sorting v/s Binary Tree Sorting ................. 36 

5.2. Results ............................................................................................................ 37 

Chapter-6: Conclusion and Future Scope .............................................................. 39 

6.1. Conclusion ...................................................................................................... 39 

6.2. Future Scope ................................................................................................... 40 

References ................................................................................................................. 41 

List of Publications ................................................................................................... 44 

  



 

Page | vi  
 

List of Figures 

 

Figure-1.1: Exponential Tree ....................................................................................... 2 

Figure-1.2: Growth Plot of Exponential Tree .............................................................. 4 

Figure-4.1: Root node of modified exponential tree .................................................. 20 

Figure-4.2: A node at ith level of modified exponential tree ..................................... 21 

Figure-4.3: A balanced and fully filled modified exponential tree ............................ 22 

Figure-4.4: Growth plot of modified exponential tree ............................................... 23 

Figure-5.1: CPU running time plot for exponential tree sorting ................................ 31 

Figure-5.2: Exponential tree sorting v/s binary tree sorting running time ................. 32 

Figure-5.3: Exponential tree sorting v/s quick sort running time ............................... 33 

Figure-5.4: CPU running time comparison ................................................................ 34 

Figure-5.5: Memory requirement plot for exponential tree sorting ........................... 36 

Figure-5.6: Memory requirement comparison ........................................................... 37 

Figure-5.7: Output ...................................................................................................... 38 

  



 

Page | vii  
 

List of Tables 

 

Table-1.1: Number of nodes in exponential tree .......................................................... 3 

Table-2.1: Comparison of traditional sorting algorithms ............................................. 8 

Table-4.1: Total number of integers in modified exponential tree ............................. 23 

Table-5.1: CPU running time ..................................................................................... 30 

Table-5.2: Memory requirement ................................................................................ 34 

  



 

Page | 1  
 

Chapter-1 

Introduction 

 

In modern computer world most of the problems are being solved by use of sorting. It 

is a classical problem which has been studied by many researchers. The traditional 

algorithms for sorting give a clear picture for complexity. Although the complexity 

for comparison sorting is now well understood, the picture for integer sorting is still 

not clear. The only known lower bound for integer sorting is the trivial Ω(𝑛) bound. 

Many continuous research efforts have been made by many researchers on integer 

sorting. Recent advances in the design of algorithms for integers sorting have resulted 

in fast algorithms. However, many of these algorithms use randomization or super-

linear space. 

For sorting integers in [0, m – 1] range 𝑂(𝑚ᵋ ) space is used in many algorithms. 

When m is large, the space used is excessive. Thus integer sorting using linear space 

is more important and therefore extensively studied by researchers. 

Fredman and Willard showed that n integers can be sorted in 𝑂 𝑛 𝑙𝑜𝑔𝑛 / 𝑙𝑜𝑔 𝑙𝑜𝑔𝑛  

time in linear space [1]. Raman showed that sorting can be done in 

𝑂 𝑛  log 𝑛 log log 𝑛  time in linear space [2]. Later Andersson improved the time 

bound to   𝑂 𝑛  log 𝑛  [3]. Then Thorup improved the time bound 

to  𝑂(𝑛(log log 𝑛)2) [4]. Yijei Han also proved the same result [5]. Later Yijei Han 

showed 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)  time for deterministic linear space integer 

sorting [6]. Yijei Han again showed improved result with 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) time and 

linear space [7]. 

In most of these algorithms expected time is achieved by using Andersson’s 

exponential tree [3]. The height of such a tree is  𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛). The exponential tree 

plays an important role in all these concepts. 
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1.1. Exponential Tree 

The exponential tree was first introduced by Andersson in his research for fast 

deterministic algorithms for integer sorting [3]. The idea of exponential tree varies 

from one researcher to other [3, 7, 8]. But the basic idea of embedding nodes in tree 

such a way that the increase of nodes with respect to height or depth behaves 

exponentially. In such a tree the number of children increases exponentially as the 

number of level increase i.e. depth of tree increases. 

One definition of exponential tree is: it is almost identical to a binary search tree, with 

the exception that the dimension of the tree is not the same at all levels. In a normal 

binary search tree, each node has a dimension (d) of 1, and has 2d children. In an 

exponential tree, the dimension equals the depth of the node, with the root node 

having  𝑑 =  1. So the second level can hold two nodes, the third can hold eight 

nodes i.e. four children of each node at second level, the fourth can hold 64 nodes i.e. 

eight children of each node at third level, and so on [7]. 

 

Figure-1.1: Exponential tree 

The height or depth of such tree is 𝑂 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛    as proved by Andersson [3]. This 

exponential tree is very difficult to handle in implementation as the pointer to children 

at nodes increases exponentially. With each increasing level, number of children of a 

node becomes doubles to its parent. The complexity associated with this tree makes it 
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very difficult to use in practical development. This is not the only one definition 

available for exponential tree. There have been many other structures for exponential 

tree proposed by researchers. But it resembles nearly to traditional tree structure, thus 

easy to understand. 

1.1.1. Growth  

The growth of exponential tree is very important to understand in order to understand 

the complexity associated with this kind of data structure. As discussed above, with 

increasing level or depth the number of children doubled for every child of parent 

each time. This gives the exponential growth to the tree. The table-1.1 shows relation 

that how the total number of node present in the tree increases exponentially with the 

increment in the level or depth. 

 

Table-1.1: Number of nodes in exponential tree 

Level 
Number of 

Nodes at Level 

Total number of 

Nodes up to Level 

1 1 1 

2 2 3 

3 8 11 

4 64 75 

5 1024 1099 

6 32768 33867 

7 2097152 2131019 

 

The figure-1.2 clearly shows that the tree has exponential growth. Thus it becomes 

very tidy to handle the growth of the tree in practical as the number of level increases. 

Because of this exponential growth it is named as exponential tree. It is to be noted 

here that each node has single key i.e. integer. This implies that the comparison to the 

node values of children nodes is very difficult task as there is enormous number of 

pointers associated with each node. 
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Figure-1.2: Growth plot of exponential tree. 

1.2. Complexity of Exponential Tree 

There are mainly two type of complexity associated with any tree. First complexity is 

of insertion in tree and the second complexity is of balancing of the tree. All other 

operation may include tracing the tree, deletion from tree and many more. But the 

major tasks are only of insertion and balancing, as all other operations always take 

less or negligible time as compared to these two techniques. 

1.2.1. Insertion 

Andersson has proved that the major time is taken by the insertion in case of 

exponential tree [3]. Andersson has shown that if we pass down integers in 

exponential tree one by one than the insertion takes 𝑂  log 𝑛   for each integer i.e. 

total complexity will be   𝑂 𝑛 log 𝑛  [3]. The expected time for insertion can be 

reduced further. One of the methods is to insert integers in batches [7]. The insertion 

of integers in batches improves the expected time required by insertion. Other ideas 

include multi-dividing of input integers. The multi-dividing technique improves the 
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insertion complexity very much. There are many other ideas proposed by researchers 

to improve the expected time for insertion. 

1.2.2. Balancing 

Andersson has shown that the balancing of the tree will take only 𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) time 

[3]. Balancing does not take more time as compared to insertion. There is not as such 

method to balance the exponential tree. The balancing techniques for exponential tree 

vary from one idea to another. The self balancing tree technique can be used for the 

balancing of exponential tree. In this technique, the track of height or depth of each 

sub-tree must be kept so that the balancing of exponential tree can be done 

appropriately and in less time. 

1.3. Sorting Using Exponential Tree 

There are many ideas proposed for integer sorting using the exponential tree. These 

ideas do sorting by inserting integers in the tree and later tracing the tree in-order to 

get the desired sequence i.e. sorted sequence. These ideas either pass integers one by 

one or pass integers in batches. In this section, two important ideas of sorting using 

exponential tree is being discussed. 

Andersson has shown that if we pass down integers in exponential tree one by one 

than the insertion takes 𝑂  log 𝑛   for each integer i.e. total complexity for 𝑛 integers 

will be  𝑂 𝑛 log 𝑛  [3]. 

Yijie Han has given an idea which reduces the complexity to 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) 

expected time in linear space [7]. The technique used by him is coordinated pass 

down of integers on the Andersson’s exponential search tree and the linear time multi-

dividing of the bits of integers. Instead of inserting integer one at a time into the 

exponential search tree he passed down all integers one level of the exponential 

search tree at a time. Such coordinated passing down provides the chance of 

performing multi-dividing in linear time and therefore speeding up the algorithm. 
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1.4. Deterministic Algorithms 

A deterministic algorithm is an algorithm which, in informal terms, behaves 

predictably. Given a particular input, it will always produce the same output, and the 

underlying machine will always pass through the same sequence of states. 

Deterministic algorithms are by far the most studied and familiar kind of algorithms, 

as well as one of the most practical, since they can be run on real machines efficiently. 

Formally, a deterministic algorithm computes a mathematical function; a function has 

a unique value for any given input, and the algorithm is a process that produces this 

particular value as output. 

A deterministic algorithm never goes out of order. It always follows the predefined set 

of steps in an ordered sequence. Thus, the deterministic algorithm is very important 

characteristic of a sorting algorithm. Recently developed fast algorithm is 

deterministic in nature. 

The deterministic algorithms are very common and widely studied. It is always 

preferable to know that how an algorithm will behave in advance. The deterministic 

algorithm always has this nature. 

1.5. Conservative and Non-Conservative Algorithms 

An integer sorting algorithm which  can  sort 𝑛 integers from set {0, 1. . . 𝑚 −  1} 

is called a conservative algorithm if the word length (the number of bits in a word) 

used in the algorithm is   𝑂(𝑙𝑜𝑔(𝑚 +  𝑛)). There are many benefits of an algorithm to 

be conservative in nature. One benefit of this nature is that the integer overflow error 

can be avoid as the number of bits in a word is always under control and less than or 

equal to    𝑂(𝑙𝑜𝑔(𝑚 +  𝑛)) . This will also reduce the extra operations required to 

handle the extra bit if integer is out of range. 

An integer sorting algorithm which  can  sort  𝑛 integers from set {0, 1. . . 𝑚 −  1} 

is called a non-conservative algorithm if the word length used is larger 

than   𝑂(𝑙𝑜𝑔(𝑚 +  𝑛)). The non-conservative nature of an algorithm is always an 

extra overhead. The larger number of bits in a word may yield error in result. The 
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extra operations are required to handle the extra bit if integer is out of range. Also the 

actual word length of platform is always a constant, thus if word length increase 

beyond a limit it becomes impossible to handle integer in a single word. 

Recent algorithms developed with the use of exponential tree are of both natures i.e. 

conservative as well as non-conservative. The algorithm with conservative nature is 

always preferred due to its many good yielding characteristics. The algorithm 

discussed in this thesis also has conservative advantage. 

1.6. Structure of the Thesis 

The rest of thesis is organized in the following order: 

Chapter-2: This chapter will provide the overview of all recent work done in area of 

fast deterministic integer sorting. 

Chapter-3: This chapter gives the problem statement and methodology used to solve 

the problem. 

Chapter-4: This chapter provides the solution to the problem discussed in chapter-3. 

This chapter also gives the modified data structure and the deterministic algorithm for 

integer sorting. 

Chapter-5: This chapter explains the implementation, testing and result of algorithm 

given in chapter-4. 

Chapter-6: This chapter gives the conclusion of the thesis with the future scope of 

topic.  
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Chapter-2 

Literature Review 

 

Sorting and searching in deterministic linear space is certainly a fundamental topic 

and many researchers have tried to find new improved bounds since the fusion trees 

[1] were first presented and even before. In modern computer world most of the 

problems are being solved by sorting. 

It is a classical problem which has been studied by many researchers. The traditional 

algorithms for sorting give a clear picture for complexity [9]. Although the 

complexity for comparison sorting is now well understood, the picture for integer 

sorting is still not clear. The only known lower bound for integer sorting is the trivial 

Ω(𝑛)  bound. The table-2.1 shows the comparative analysis of various traditional 

algorithms [9]: 

Table-2.1: Comparison of traditional sorting algorithms 

Name Best Average  Worst Memory 

Insertion sort 𝑂(𝑛) 𝑂(𝑛2) 𝑂(𝑛2) 𝑂(1) 

Shell sort 𝑂(𝑛) 𝐷𝑒𝑝𝑒𝑛𝑑𝑠 𝑂(𝑛 𝑙𝑜𝑔𝑛 2) 𝑂(𝑛) 

Binary tree sort 𝑂(𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛) 

Selection sort 𝑂(𝑛2) 𝑂(𝑛2) 𝑂(𝑛2) 𝑂(1) 

Heap sort 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(1) 

Bubble sort 𝑂 𝑛2  𝑂(𝑛2) 𝑂(𝑛2) 𝑂(1) 

Merge sort 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) Depends 

Quick sort 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛2) 𝑂(log 𝑛) 

Randomized 

Quick sort 
𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(𝑛𝑙𝑜𝑔𝑛) 𝑂(log 𝑛) 

Signature sort 𝑂(𝑛) 𝑂(𝑛) 𝑂(𝑛) Linear 
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Many continuous research efforts have been made by many researchers on integer 

sorting [1-10]. Recent advances in the design of algorithms for integers sorting have 

resulted in fast algorithms. However, many of these algorithms use randomization or 

super-linear space. For sorting integers in [0, m – 1] range 𝑂(𝑚ᵋ ) space is used in 

many algorithms. When m is large, the space used is excessive. Thus integer sorting 

using linear space is more important and therefore extensively studied by researchers. 

Some of the recent results include: Fredman and Willard showed that n integers can 

be sorted in 𝑂 𝑛 𝑙𝑜𝑔𝑛 / 𝑙𝑜𝑔 𝑙𝑜𝑔𝑛  time in linear space using fusion tree [1]. Raman 

showed that sorting can be done in 𝑂 𝑛  log 𝑛 log log 𝑛  time in linear space [2]. 

Later Andersson improved the time bound to  𝑂 𝑛  log 𝑛   which is discussed later in 

this chapter [3]. Then Thorup improved the time bound to  𝑂 𝑛 log log 𝑛 2   which is 

also discussed later in this chapter [4, 10]. Later Yijei Han showed 

𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) time for deterministic linear space integer sorting [6]. 

Yijei Han again showed improved result with 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) time and linear space 

[7]. Thorup also achieved a time bound of 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) using randomization [10]. 

Many researchers have also worked on parallel integer sorting techniques [11-24]. 

Arrays, trees and hyper-cubes are used to achieve better expected time for parallel 

integer sorting [18]. Radix sort have been optimized for parallel integer sorting [21]. 

Priority queues have also been used to achieve better results [25, 26]. Many ideas are 

proposed which has non-conservative nature [15, 27]. Bucket sort is also enhanced to 

measure better performance [15]. Insertion sort can also be used to achieve a time 

bound of  𝑂(𝑛 𝑙𝑜𝑔 𝑛) [28]. Many ideas proposed by researchers use randomization to 

achieve better time bound for integer sorting [2, 27, 29]. But randomization does not 

always give better result. The idea of sorting integers using word comparison is also 

enhanced [8, 10, 27]. The performance is one of the key issues with word comparison 

sorting technique. Researchers have been trying to improve its performance. The 

better selection algorithms and work done on problems related to random access 

machines played an important role in improvement of time bound for integer sorting 

[30, 31]. 
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Andersson’s signature sort was the pioneer for word comparison sorting technique 

[2]. It has been used by many researchers to achieve better time bound for integer 

sorting. But still the performance and implementation issues need to be addressed. 

2.1. Fusion Tree [1] 

Fusion tree [1] can be obtained by increasing the degree of the binary trees to log n so 

that the height of the tree is reduced to   𝑂( 𝑙𝑜𝑔 𝑛 / 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) . A fusion tree is 

essentially a B-tree with branching factor  𝐵 =  (𝑙𝑜𝑔 𝑛)1/5. If h is the height of the B-

tree, then  𝑛 =  𝐵ℎ , so 

𝑛 =  ((𝑙𝑜𝑔 𝑛)1/5)ℎ  

⇒ log 𝑛 =
ℎ

5
log log 𝑛 

⇒ ℎ =  𝛩(log 𝑛/ log log 𝑛) 

Search operation at a node of fusion tree can be done in a time bound 

of   𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) . Thus overall worst case time cost of sorting 𝑛  integers 

is  𝑂(𝑛 𝑙𝑜𝑔 𝑛 / 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛). This is the improvement over past result shown by Raman 

and traditional algorithms [1]. 

2.2. Sorting in 𝑶 𝒏  𝐥𝐨𝐠𝒏  Expected Time [3] 

Arne Andersson has proved that as an application, keys can be sorted in linear time 

of   𝑂 𝑛 𝑙𝑜𝑔𝑛   worst-case cost [3]. The best previous method for deterministic 

sorting and searching in linear space before this has been the fusion trees which 

supports updates and queries in   𝑂 log 𝑛/ log log 𝑛   amortized time and sorting 

in  𝑂 𝑛 log 𝑛/ log log 𝑛  worst-case time [1]. This is accomplished with the help of a 

new data structure named exponential search tree. 

The data structure introduced by Andersson has the following properties: 

1. Its root has degree  𝜃(𝑛1/5).  
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2. The keys of the root are stored in a local (static) data structure, with the 

properties stated above. During a search, the local data structure is used to determine 

in which sub-tree the search is to be continued. 

3. The sub-trees are exponential search trees of size  𝜃(𝑛4/5). 

Andersson has also driven following results for this data structure: 

1. For given 𝑛  sorted keys, an exponential search tree can be constructed in 

linear time and space. Since the cost of constructing a node of 𝑑 degree is 𝑂(𝑑4) then 

the total construction cost 𝐶(𝑛) is given by:  

𝐶 𝑛 =  𝑂   𝑛
1
5 

4

 +  𝑛
1
5. 𝐶  𝑛

4
5  

⇒   𝐶 𝑛 =  𝑂(𝑛) 

2. The space required by the data structure is  𝑂(𝑛). 

3. The search cost 𝑇(𝑛) is given by,  

𝑇 𝑛 =  𝑂  𝑆  𝑛
1
5  +  𝑇(𝑛4/5) 

4. Each time some sub-trees are reconstructed, the degree of the root will change 

and the root must be reconstructed. The cost of this reconstruction is  𝑂   𝑛
1

5 
4

 . 

Again, this is linear in the size of a sub-tree. Hence, the amortized cost of 

reconstructing the root is  𝑂 1 . This gives the following equation for the amortized 

restructuring cost  𝑅 𝑛 : 

𝑅 𝑛 =  𝑂 1 +  𝑅  𝑛
4
5  

⇒   𝑅 𝑛 =  𝑂 log log 𝑛  

5. The cost of searching is also  𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛). 

Using the exponential search tree data structure Andersson has proven the following: 
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𝑇 𝑛 =  𝑂  𝑚𝑖𝑛.  1 +
log 𝑛

log𝑤
, log𝑤  +  𝑇(𝑛4/5) 

Balancing the two parts of the min-expression gives: 

𝑇 𝑛 =  𝑂  log 𝑛 +  𝑇(𝑛4/5) 

And hence, 

𝑇 𝑛 =  𝑂  log 𝑛  

This shows that 𝑛  integers can be sorted in 𝑂  log 𝑛  expected time in linear space 

[3]. This result is optimized over previous traditional results and integer sorting using 

fusion tree [1]. 

2.3. Sorting in 𝑶(𝒏(𝐥𝐨𝐠 𝐥𝐨𝐠𝒏)𝟐) Expected Time [5, 6] 

The whole process of sorting in 𝑂(𝑛(log log 𝑛)2) consists of mainly three functions 

discussed below [5]. This was first proved by Thorup [4, 10] and later given by Yijie 

Han [5]. This time complexity is achieved using word comparison. The parallelism of 

uniprocessor environment is exploited in order to achieve this. The bits of integers are 

divided into smaller size and a set is made and the sorting is applied to this set. The 

process is as follows [5]: 

Sort (level,  𝑎0 ,  𝑎1 ,...,  𝑎𝑡  ) [5]. 

/∗ 𝑎𝑖  ’𝑠 are the input integers in a set to be sorted, level is the recursion level. ∗/ 

Step-1: If level = 1 then examine the size of the set (i.e.  𝑡). If the size of the set is less 

than or equal to   𝑛, then return. Otherwise use the current block to divide the set into 

at most three sets. For the set all of its elements are equal to the median eliminate the 

current block and note the next block to become the current block. Create a label 

which is the set number (0, 1, or 2 because the set is divided into at most three sets) 

for each integer. Then reverse the computation to route the labels for each integer 

back to the position where the integer located in the input to the procedure call. Also 
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route a number (a 2-bit number) for each integer indicating the current block back to 

the location of the integer. 

Return. 

Step-2: Cut the bits in each integer 𝑎𝑖  into equal two segments 𝑎𝑖
𝐻𝑖𝑔ℎ

  (high order bits) 

and 𝑎𝑖
𝐿𝑜𝑤   (low order bits). Pack  𝑎𝑖

𝐻𝑖𝑔ℎ
 ’s into half the number of words. 

Call Sort (level−1, 𝑎0
𝐻𝑖𝑔ℎ

 , 𝑎1
𝐻𝑖𝑔ℎ

 ,..., 𝑎𝑡
𝐻𝑖𝑔ℎ

 ). 

/∗ when the algorithm returns from this recursive call the label for each integer 

indicating the set the integer belongs is already routed back to the position where the 

integer locates in the input of the procedure call. A number having at most the number 

of bits in  𝑎𝑖  indicating the current block in 𝑎𝑖  is also routed back to  𝑎𝑖 . ∗/ 

Step-3: For each integer  𝑎𝑖  extract out 𝑎𝑖
𝐿𝑜𝑤  which has half the number of bits as in 

 𝑎𝑖  and is a continuous segment with the most significant block being the current 

block of  𝑎𝑖. Pack  𝑎𝑖
𝐿𝑜𝑤  ’s into half the number of words as in the input. 

Step-4: For each set S = {𝑎𝑖0  , 𝑎𝑖1  ,..., 𝑎𝑖𝑠  } call Sort(level − 1, 𝑎𝑖0
𝐿𝑜𝑤  , 𝑎𝑖1

𝐿𝑜𝑤  ,..., 𝑎𝑖𝑠
𝐿𝑜𝑤  ). 

Step-5: Route the label which is the set number for each integer back to the position 

where the integer located in the input to the procedure call. Also route a number 

(𝑎 2 𝑙𝑒𝑣𝑒𝑙 +  1 ) bit number for each integer indicating the current block back to the 

location of the integer. This step is the reverse of the routing in Step 3. 

IterateSort() [5]. 

Call Sort (𝑙𝑜𝑔((𝑙𝑜𝑔 𝑛)/4), 𝑎0 , 𝑎1 ,..., 𝑎𝑛−1 ); 

For 𝑗 =  1 to 5 do 

Begin 

Move 𝑎𝑖  to its set by bucket sorting because there are only about  𝑛 sets; 

  For each set S = S = {𝑎𝑖0  , 𝑎𝑖1  ,..., 𝑎𝑖𝑡  } 
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If 𝑡 >   𝑛 then call Sort (𝑙𝑜𝑔((𝑙𝑜𝑔 𝑛)/4), 𝑎𝑖0  , 𝑎𝑖1  ,..., 𝑎𝑖𝑡  ); 

End. 

Then (3/2) 𝑙𝑜𝑔 𝑛  calls to the 𝑙𝑒𝑣𝑒𝑙 1  procedure are executed. Blocks can be 

eliminated at most 𝑙𝑜𝑔 𝑛 times. The other (1/2) 𝑙𝑜𝑔 𝑛 calls are sufficient to partition 

the input set of size 𝑛 into sets of size no larger than   𝑛. 

At  𝑙𝑒𝑣𝑒𝑙 𝑗, only 𝑛/2𝑙𝑜𝑔 ((𝑙𝑜𝑔  𝑛)/4)− 𝑗   words are used to store small integers. Each call 

to the Sort procedure involves a sorting on labels and a transposition of packed 

integers and therefore involves a factor of 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 in time complexity. Thus the 

time complexity of algorithm is: 

𝑇 (𝑙𝑒𝑣𝑒𝑙)  =  2𝑇 (𝑙𝑒𝑣𝑒𝑙 −  1)  +  𝑐𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛/2𝑙𝑜𝑔 ((𝑙𝑜𝑔  𝑛)/4)−𝑙𝑒𝑣𝑒𝑙  

𝑇 (0)  =  0 

Where 𝑐 is a constant. Thus,  𝑇 (𝑙𝑜𝑔((𝑙𝑜𝑔 𝑛)/4))  =  𝑂 (𝑛(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)2). Algorithm 

IterateSort only sorts sets into sizes less than   𝑛. Another recursion is needed to sort 

sets of size less than   𝑛 . This recursion has 𝑂 (𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)  levels. Thus the time 

complexity to have the input integers sorted is  𝑂 (𝑛(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)3). 

The sorting process is not stable. Since the sorting is done for arbitrarily large 

integers, the address bits to each input integer can be appended to stabilize the sorting. 

Although this requires that each word contains 𝑙𝑜𝑔 𝑚 +  𝑙𝑜𝑔 𝑛 bits, when 𝑚 ≥  𝑛 

the number of bits for each word can be kept at 𝑙𝑜𝑔 𝑚 by using the idea of radix 

sorting, namely sorting 𝑙𝑜𝑔 𝑚 +  𝑙𝑜𝑔 𝑛 bits in each pass. 

The space used for each next level of recursion in Sort uses half the size of the space. 

After recursion returns the space can be reclaimed. Thus the space used is linear 

i.e. 𝑂 (𝑛). 

The following technique is applied to further improve the time complexity of the 

algorithm [5, 6]: 
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The 𝑙𝑜𝑔 𝑚  bits of an integer are divided into 𝑙𝑜𝑔(𝑠𝑒𝑡𝑠𝑖𝑧𝑒) 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛  blocks with 

each block containing (𝑙𝑜𝑔 𝑚)/(𝑙𝑜𝑔(𝑠𝑒𝑡𝑠𝑖𝑧𝑒) 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) bits, where 𝑠𝑒𝑡𝑠𝑖𝑧𝑒 is the 

size of the set where integers are to sort into. Initially,  𝑠𝑒𝑡𝑠𝑖𝑧𝑒 =   𝑛. The algorithm 

𝑆𝑝𝑒𝑒𝑑𝑆𝑜𝑟𝑡() is executed with  𝑠𝑒𝑡𝑠𝑖𝑧𝑒 =   𝑛: 

SpeedSort(setsize) [5, 6]. 

While there is a set 𝑆 which has 𝑠𝑖𝑧𝑒 >  𝑠𝑒𝑡𝑠𝑖𝑧𝑒 do begin 

Step-1: For each integer 𝑎𝑖  ∈  𝑆  extract out 𝑎’  which contains 𝑙𝑜𝑔(𝑠𝑒𝑡𝑠𝑖𝑧𝑒) 

continuous blocks of 𝑎𝑖  with the most significant block being the current block, put 

all  𝑎𝑖 ’𝑠 𝑖𝑛 𝑆’; 

Step-2: Call IterateSort on set  𝑆’; 

End. 

The whole sorting process consists of  𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛   levels of calling SpeedSort: 

SpeedSort(𝑛1/2 ), SpeedSort(𝑛1/4 ),  SpeedSort(𝑛1/8 ), ......, SpeedSort(𝑛1/2𝑖 ). In 

SpeedSort(𝑛1/2𝑖 ) each word stores 𝑙𝑜𝑔(𝑠𝑒𝑡𝑠𝑖𝑧𝑒)  =  𝑙𝑜𝑔 𝑛/2𝑖  blocks and each block 

contains 𝑙𝑜𝑔 𝑚/(𝑙𝑜𝑔(𝑠𝑒𝑡𝑠𝑖𝑧𝑒) 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)  =  2𝑖  𝑙𝑜𝑔 𝑚/(𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)  bits. 

Therefore during the sorting process each word stores no more than 𝑙𝑜𝑔 𝑚/ 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 

bits of integer data. One iteration of the while loop in any of the SpeedSort’s takes 

𝑂 (𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) time for each integer. The account is taken for the time for each integer 

in the whole sorting process by two variables 𝐷  and 𝐸 . If an integer a has gone 

through 𝑔𝑖  iterations of the while loop of SpeedSort(𝑛1/2𝑖 ) then (𝑔𝑖 − 1) 𝑙𝑜𝑔 𝑚/

 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛  bits of 𝑎  have been eliminated in SpeedSort(𝑛1/2𝑖 ). The value 𝑂( 𝑔𝑖 −

1 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) is added to variable 𝐸 indicating that much time has been expended to 

eliminate (𝑔𝑖 − 1) 𝑙𝑜𝑔 𝑚/ 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 bits. The value 𝑂 (𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) is also added to 

variable 𝐷  indicating that much time has been expended to divide the set in 

SpeedSort(𝑛1/2𝑖 ). Because of elimination of at most log m bits, the value of 𝐸 is up 

bounded by  𝑔𝑖  𝑙𝑜𝑔 log  𝑛𝑖 = 𝑂 ((𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)2 ) throughout all levels of SpeedSort() 

invocations. The value of variable 𝐷 is also up bounded by 𝑂 ((𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)2 ) because 
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there are 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 levels of SpeedSort() invocations. Therefore, 𝑛 integers can be 

sorted in linear space in 𝑂  𝑛 log log 𝑛 2  time [5, 6]. 

2.4. Other Fast Deterministic Sorting Algorithms 

The recent research in area of integer sorting has given many new ideas [1-24]. These 

ideas are either based on exponential tree or packed sorting technique or a 

combination of both. Fredman and Willard’s concept of sorting 𝑛  integers in 

𝑂 𝑛 𝑙𝑜𝑔𝑛 / 𝑙𝑜𝑔 𝑙𝑜𝑔𝑛  expected time and linear space was based on fusion tree [1]. 

Raman showed that sorting can be done in 𝑂 𝑛  log 𝑛 log log 𝑛  time in linear space 

[2]. 

Yijie Han showed 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) time for deterministic linear space 

integer sorting using a variant of exponential tree [6]. Yijie Han later show that 𝑛 

integers can be sorted in  𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) expected time in linear space using multi-

dividing in exponential tree [7]. He used signature sorting to accomplish multi-

dividing. This is one of the most important results in area of integer sorting, so it is 

discussed in detail in following sub-section. Yijie Han’s one more result show that 𝑛 

integers can be sorted in 𝑂 𝑛  log log 𝑛  expected time [27]. 

2.4.1. Yijie Han’s Concept of Sorting Integers in 𝑶(𝒏 𝒍𝒐𝒈 𝒍𝒐𝒈 𝒏) [7] 

For sorting n integers in the range  {0, 1, 2, . . . , 𝑚 −  1} in 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) expected 

time, it is assumed that the word length used in this conservative algorithm 

is  𝑂(𝑙𝑜𝑔(𝑚 +  𝑛)). In integer sorting, small integers are often packed into one word. 

It is also assumed that all the integers packed in a word use the same number of bits. 

The basic idea of Andersson’s exponential search tree is used here: a balanced search 

tree is constructed where the degree of a node with m descendents is  𝛩(𝑚1/5), hence 

where each child has  𝛩(𝑚4/5) descendents [3]. 

In Andersson’s exponential search tree, integers are inserted (passed down) into the 

tree one at a time [3]. Thorup suggested to pass down 𝑑 integers at a time, where 𝑑 is 

the number of children of the node in the tree where integers are to be passed down 

[5]. This sorting algorithm will stick with this scheme, namely passing down 𝑑2 
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integers at a time. The 𝑑2 integers are not passed down all the way down the tree. 

Instead, the 𝑑2 integers are passed down at a time to one level of tree until all integers 

are passed down one level. Thus at the root 𝑛2/5 integers are passed down to the next 

level at a time. After all integers are passed down to the next level, integers essentially 

partitioned into 𝑡1   =  𝑛1/5 sets  𝑆1, 𝑆2, . . . , 𝑆𝑡1
 with each 𝑆𝑖   containing 𝑛4/5 integers 

and 𝑆𝑖 < 𝑆𝑗   if 𝑖 <  𝑗. Then 𝑛 
4

5
 .(

2

5
)
  integers are taken from each 𝑆𝑖  at a time and 

coordinated to be passed down to the next level of the exponential search tree.  This is 

repeated until all integers are passed down to the next level. At this time integers have 

been partitioned into 𝑡2   =  𝑛1/5. 𝑛4/25 =  𝑛9/25  sets 𝑇1, 𝑇2  , . . . , 𝑇𝑡2
 with each set 

containing 𝑛16/25  integers and 𝑇𝑖   <  𝑇𝑗   if   𝑖 <  𝑗 . Now integers are ready to be 

passed down to the next level in the exponential search tree. The levels of the 

exponential search tree are numbered top down order so that root is at level 0 [7]. 

The pass down can be viewed as sorting 𝑞 integers in each set together with the 𝑝 

integers 𝑎1, 𝑎2, . . . , 𝑎𝑝  in the exponential search tree so that these 𝑞  integers are 

partitioned into 𝑝 +  1  sets 𝑆0, 𝑆1, . . . , 𝑆𝑝   such that 𝑆0 <   𝑎1 < 𝑆1 <  𝑎2  <

 ……… <  {𝑎𝑝}  < 𝑆𝑝 . Since the 𝑞 integers don’t require to be totally sorted and  𝑞 =

 𝑝2. The linear timed multi-dividing technique is used to accomplish this. Signature 

sorting can be used to accomplish multi-dividing [7]. 

This technique of sorting integers gives a time bound of 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) in linear 

space [7]. 
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Chapter-3 

Problem Statement 

 

The optimization of the deterministic integer sorting is still a challenging task. Many 

researchers have come forward with different idea. These ideas are very attractive in 

form of expected time taken by them and the space requirements. But the 

methodology used in these ideas is very difficult to understand and impractical to 

implement. Thus the first task is to simplify the idea in order to make the concept 

useful for real environment. The data structure used in recent deterministic algorithm 

is very complex not only in design but also for implementation. The exponential tree 

described by researchers is of different kind [3, 7, 8]. It has many layouts and designs. 

Many layouts of them are very complex as there are a lot of pointers to handle. These 

designs have one key per node. Thus these designs are very impractical for any value 

of input integers as there is more memory used for pointers as compared to integers. 

Hence, the second task is to re-define or re-design the layout of exponential tree in 

such a way that it becomes optimized for memory requirements and give 

comparatively good expected time for insertion and other operations. 

The third and final task is to achieve optimized expected time using the simplified 

idea and new design of exponential tree. Achieving the optimized expected time is not 

only task to be done but it should also give good performance in real time. This means 

that the implementation should be minded while developing the algorithm. All these 

three tasks are very important in order to propose an algorithm which is not only 

optimized but also practical in nature. 
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Chapter-4 

Improved Exponential Tree Integer Sorting Algorithm 

Using Node Growth 

 

In this section, solution to the problem discussed in above section is provided. The 

solution can be broadly categorized in two parts. The first part is to modify 

exponential tree so that it can be used and implemented properly. The second part 

includes designing the algorithm with logics for insertion, modifying binary search 

and logic for in-order tracing. This section will also provide the pseudo code for 

sorting algorithm with implementation. 

4.1. Modified Exponential Tree 

The exponential tree was first introduced by Andersson in his research for fast 

deterministic algorithm for integer sorting [3]. In such a tree the number of children 

increases exponentially. 

An exponential tree is almost identical to a binary search tree, with the exception that 

the dimension of the tree is not the same at all levels. In a normal binary search tree, 

each node has a dimension (d) of 1, and has 2
d
 children. In an exponential tree, the 

dimension equals the depth of the node, with the root node having  𝑑 =  1. So the 

second level can hold two nodes, the third can hold eight nodes, the fourth 64 nodes, 

and so on [7]. This shows that number of children at each level increased by a 

multiplicative factor of 2 i.e. exponential increase in number of children at each level 

[7]. 

The tree itself is very complex to handle as number of integer increases. Also there is 

a need to handle more pointers at each level on each node. Thus the exponential tree 

needs to be modified. The modified concept of exponential tree will provide a 

convenient way for integer sorting. Instead of focusing number of nodes present in 
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tree it is profitable to focus on number of integers present in the tree as the concern is 

about how to use it for integer sorting. 

A tree with properties of binary search tree will be called the exponential tree if it has 

following properties: 

1. Each node at level 𝑘 will hold 𝑘 number of keys (or integers in our case) i.e. at 

depth 𝑘 the number of key in any node will be 𝑘 keeping root at level 1. 

2. Each node at level 𝑘 will be having 𝑘 + 1 children i.e. at depth 𝑘 the number of 

children will be 𝑘 + 1. 

3. All the keys in any node must be sorted. 

4. An integer in child 𝑖 must be greater than key 𝑖 − 1 and less than key  𝑖. 

The total number of integers hold by the tree up to level 𝑘 will be the addition of total 

number of integers up to level 𝑘 − 1  and integers present on that level. This will be 

given by the following formula: 

𝑁𝑘 = 𝑁𝑘−1 + 𝑘 ∗ 𝑘!      …………. (1) 

where 𝑁𝑘  is total number of integers up to level 𝑘. 𝑁1 = 1 as root is at level 1 and 

holds only 1 integer. 

 𝑘 if 𝑘𝑡ℎ level and 𝑘! denotes factorial of 𝑘. 

Thus the node at root will look like as: 

 

Figure-4.1: Root node of modified exponential tree. 
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And the node at 𝑖𝑡ℎ level or depth will look like as: 

 

Figure-4.2: A node of at ith level of modified exponential tree. 

The height of the tree will remain   𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) which can be proved by use of 

induction. The modification will not only reduce the complexity of exponential tree 

involved in implementing it but also improves the balancing method as well as sorting 

technique. Integer sorting will be more convenient and fast with this modification. 

The implementation of exponential tree requires creation of the exponential tree node. 

Here is a skeleton for exponential node which is used in implementation for integer 

sorting: 

struct Node{ 

 int level; 

 int count; 

 Node **child; 

 int data[]; 

} 

Here level will holds the level number of the node. 

 count will holds the number of integer currently present in the node. 
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 child is an array of pointers to level+1 children of the node. 

 data is an array of integers to hold the integers present in that node. 

It must be noted here that while creating a new child node for a parent, the variables 

held by that node must be initialized with default values. This will help to avoid error 

introduced by the garbage values present on those memory locations which are 

assigned to the variables of the new node. 

4.1.1. Growth 

The growth of this modified exponential tree is also exponential in nature. But this 

modified design provides an easy implementation. The concern is about to handle as 

much integers as possible up to a particular level. This is because the data structure is 

particularly designed for integer sorting. The figure-4.3 shows a fully filled and 

balanced exponential tree. 

 

Figure-4.3: A balanced and fully filled modified exponential tree 

It is important to see here that total number of integers become nearly ten times after 

each level up to level 9. After that the number of integers increases more than 

expectations. 
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Table-4.1: Total number of integers in modified exponential tree 

Level No of Integers 

1 1 

2 5 

3 23 

4 119 

5 719 

6 5039 

7 40319 

8 362879 

9 3628799 

The figure-4.4 shows that the modified tree also has exponential growth with respect 

to total number of integers present in the tree. 

 

Figure-4.4: Growth plot of modified exponential tree 

4.1.2. Balancing 

The balancing of exponential tree is one of the most important and necessary task in 

order to achieve the 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) expected time in linear space. If the tree is not 
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balanced then the worst case might happen and the expected running time will 

increase to undesired level. The balancing will guarantee that the depth of tree will 

remain 𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) which will lead us to our target. The tree will be balanced if the 

difference between depths (or heights) of both sided children of a key will not exceed 

by 2. The balancing will happen on all the children of the node. Each key will play a 

role of a node like in binary search tree in balancing. In order to balance the tree, the 

track of number of keys passed through a particular node can be kept. This track will 

help when to call the balancing procedure. The difference between depths of two 

children can be calculated by checking how many keys have been passed to those 

children. If this difference will increase the maximum number of keys the node can 

hold then the tree need to be balanced. 

The strictly balanced tree concept can enhance the use of tree with a little overhead of 

processing. The tree will be called strictly balanced if the difference between heights 

(or depths) of both sided children of a key will not exceed by 1. This balancing will 

help to achieve a true bound of 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) expected time. The self balancing 

technique which is already in existence in self balancing binary tree can be used while 

implementing the balancing for exponential tree. It is up to the developer which 

balancing technique is used. 

4.2. Insertion 

The sorting of integers happens with inserting them into exponential tree. After 

inserting the integers into tree, trace the tree in in-order to get the sorted list as output. 

As proved by Andersson, insertion into exponential tree takes most of the time, thus 

the focus is to achieve the insertion in lesser expected time [3]. 

As discussed above the exponential tree is a binary search tree itself, thus the insertion 

requires finding the appropriate place of the integer. This will happen by comparing 

integer with keys presented in any node. There are at most 𝑘 number of keys in any 

node at depth or level  𝑘, which means there will be at most 𝑘 number of comparisons 

for passing the integer through that level. 

Andersson has proved that insertion can be done in 𝑂 𝑛 log 𝑛   expected time by 

passing down integer to exponential tree one by one, which does not seem well 
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enough optimized [3]. But in the best case scenario the insertion will take 

𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) time as only one comparison will required at each level. The best case 

happens rarely, thus the best case scenario is not reliable. Hence, the further 

modification in concept is required to achieve better result. 

As discussed passing down integers one at a time does not give well enough expected 

time. Yijie Han came up with the idea of passing down the integers in group [7]. He 

used multi-dividing technique to split the integers into smaller lists. He suggested that 

instead of inserting integer one at a time into the exponential search tree one can pass 

down all integers to one level of the exponential search tree at a time. Such 

coordinated passing down provides the chance of performing multi-dividing in linear 

time and therefore speeding up the algorithm. This technique gives an expected time 

of  𝑂( 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) in linear space [7]. But it is very difficult to pass all integers at 

once if the number of integers is very large. Thus the insertion of integers in groups 

does not seem very good in terms of implementation and complexity associated in 

passing down all integers at once. 

The algorithm discussed in this thesis will pass down integers one by one in modified 

design. The algorithm will give a complexity of 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)  by 

reducing the number of comparison required at each level. 

The insertion method in which the modified binary search is used is described below 

and later modified binary search. The insertion method is as follows: 

Insert(Node *root,int element) 

Step-1: Set *ptr=root, *parent=NULL, i=0. 

Step-2: Repeat step 3 to 6 while ptr <> NULL. 

Step-3: Set level=ptr->level, count=ptr->count. 

Step-4: Call i=BinarySearch(ptr, element). 

Step-5: If count<level then 

Repeat For j=count to i-1 by -1 
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ptr->data[j]=ptr->data[j-1] 

Set ptr->data[i]=element 

 Set ptr->count=count+1 

 Return. 

Step-6: Set parent=ptr, ptr=ptr->child[i]. 

Step-7: Create a new Exponential Node at 𝑖𝑡ℎ child of parent and insert element in 

that. 

Step-8: Return. 

The tree has a depth or height of  𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛). Thus each integer requires to be 

passed down maximum of  𝑂 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛   levels. Considering that at each level only 

𝑂 1   expected number of comparisons happens, this will give overall time bound 

of 𝑂 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛   for insertion of each integer. To sort a sequence of 𝑛 integers, all 

integers have to be passed down. Thus the total expected time will 

be   𝑂 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 . But this is not the case in this algorithm. The number of 

comparison at each level is not  𝑂 1 . The number of comparisons at each level is 

given by the modified binary search. The traditional binary search takes 𝑂(𝑙𝑜𝑔 𝑚) 

expected time; same is the case with binary search discussed below. This implies that 

at each level there will be at most 𝑂(𝑙𝑜𝑔 𝑘) comparisons where 𝑘 is the keys hold by 

the node i.e. depth of height of the node. Hence for each integer to be passed down to 

the tree there will be at most 𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑘) expected number of comparisons. 

For a sequence of 𝑛  integers the expected time of the algorithm will be 

𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑘) . The maximum value of 𝑘  could be 𝑂(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)  i.e. the 

height of the tree. Thus the overall complexity of the algorithm will be 

𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) in linear space. 

4.3. Binary Search 

As discussed in the definition of the exponential tree, all integers presented in a node 

of exponential tree must be sorted thus this property can be exploited to enhance the 
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performance. In order to search the position in a sorted list, binary search can be used 

with little modification. The binary search takes 𝑂 𝑙𝑜𝑔 𝑛  expected time in searching. 

Hence the performance will be enhanced by the use of binary search instead of linear 

search. 

It must be noted here that the binary search is only used inside node of the exponential 

tree. It will give the position at which the element should be inserted. If there is space 

for more elements in that node only then the element will be inserted otherwise the 

algorithm moves to next level of exponential tree i.e. the predecessor child of that 

particular node. The modified binary search is as under: 

BinarySearch(Node *ptr,int element) 

Step-1: If element > ptr->data[count-1] then return ptr->count. 

Step-2: Set start=0, end=ptr->count-1, mid= (start + end)/2. 

Step-3: Repeat step 4 & 5 while start < end. 

Step-4: If element > ptr->data[mid] then start=mid+1 

else end=mid 

Step-5: Set mid= (start + end)/2. 

Step-6: return mid. 

4.4. Trace 

When all the integers will be inserted in the tree, then the in-order trace of the tree 

will give us the desired sorted sequence. The in-order trace for the exponential tree is 

same as for binary tree. The only difference is that first the predecessor for a key is 

traced before tracing the key and when all keys of a node is traced then the rightmost 

child is traced. The in-order trace will be: 

In-Order-Tace(Node *r) 

Step-1: Set count=r->count 
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Step-2: Repeat For i=0 to count by 1 

Step-3: If r->child[i] <> NULL call In-Order-Trace(r->child[i]). 

Step-4: Print r->data[i]. 

Step-5: If r->child[count] <> NULL call In-Order-Trace(r->child[count]). 

Step-6: Return. 

The tracing of the tree will take 𝑂 𝑛  expected time which is linear. This is because 

each integer is accessed only one time. 

The overall combined complexity of above algorithms will 

be   𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛) . This shows that the desired result has been 

achieved using new design of exponential tree and modified binary search. The 

algorithm runs in linear space. 
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Chapter-5 

Testing and Results 

 

5.1. Testing 

This section will show the comparison of the performance of the exponential tree 

sorting with binary tree sorting and quick sort. It is obvious to think here that the 

comparison of the exponential tree sorting must be done with Quick sort only which is 

best known and widely used sorting technique; but as quick sort is mainly used for 

integers stored at consecutive memory location i.e. array, here the exponential tree 

sorting works on non-consecutive memory location. Hence binary tree sorting is also 

considered for comparison. The comparison includes CPU running time and Memory 

requirement. 

The quick sort technique and binary tree sorting is used to compare the running time 

while only binary tree sorting technique is used for comparing the space requirement. 

This is because the quick sort is applied on array data structure while the binary tree 

sorting is applied on binary tree which is a tree structure relevant to the exponential 

tree data structure. 

The input integers are generated by using random function and stored in a file. Later 

that file is used as an input for all sorting algorithms. The output of each sorting 

technique is also stored in a file to avoid the loss of output sequence which happens 

when printing the sequence on console. Other benefit of doing so is that the output of 

each algorithm later can be compared to ensure the desired result. 

The implementation of algorithms is done in VC++ on Visual Studio 2008 using 

Object Oriented Approach. The platform used is Intel 64-bit with Core 2 Duo 

processor having a frequency of 2.0 GHz with Windows 7 64-bit Enterprises Edition 

running on it. The system had a RAM of 4GB. While measuring the performance i.e. 

collecting the details all other extra processes were terminated. This helped to 



 

Page | 30  
 

measure running time accurately and very near to actual time taken by algorithm. This 

data is the result obtained immediately after running defragmentation of the memory 

to avoid any variation due to different of the job being stored at non-continuous 

location far away from each other. 

5.1.1.  Running Time 

The running time of algorithm is measured as CPU cycles and later converted to 

seconds. This is done using clock() function from clock_t in time.h and then divided 

by CLOCKS_PER_SECOND. Same process is followed for all algorithms. The 

running time includes the reading inputs from input file, creating tree and writing 

output to output file. The best out of three runs is noted. The running-time 

measurement is started with N=1024 and in each step the value of n is doubled to see 

the effect of increase in number of input integers. It is noted that the running time 

increases linearly with increase in number of input integers. 

Table-5.1: CPU running time 

N Log N Exp Tree Binary Tree Quick Sort 

1024 10 0 0 0 

2048 11 0.007 0.008 0.007 

4096 12 0.016 0.016 0.016 

8192 13 0.031 0.047 0.047 

16384 14 0.046 0.078 0.141 

32768 15 0.141 0.172 0.234 

65536 16 0.202 0.343 0.359 

131072 17 0.328 0.686 0.796 

262144 18 0.687 1.341 1.326 

524288 19 1.31 2.449 2.246 

1048576 20 2.496 4.446 4.508 

2097152 21 5.803 9.937 7.691 

4194304 22 23.603 62.26 14.945 

8388608 23 59.077 261.816 38.392 

16777216 24 156.531 855.022 109.574 
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5.1.1.1. Analysis of Exponential Tree Sorting Running Time 

The figure-5.1 shows the CPU running time for the Exponential tree sorting, which 

clearly depicts that the slope of graph is linear. 

 

Figure-5.1: CPU running time plot for exponential tree sorting 

The increase in running time of algorithm is directly proportional to number of input 

integers. The slope clearly shows that whenever number of input integers is increased 

then the running time is increased proportionally. This implies that the performance of 

the exponential tree sorting is very good. 

5.1.1.2. Exponential Tree Sorting v/s Binary Tree Sorting 

The figure-5.2 shows the comparison between CPU running times for the exponential 

tree sorting and binary tree sorting which depicts that the exponential tree sorting 

takes relatively very less CPU time for same number of integers than taken by binary 

tree sorting. As the number of integers increases the CPU time for exponential tree 

sorting increase with very small factor than binary tree sorting. 
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Figure-5.2: Exponential tree sorting v/s binary tree sorting running time 

5.1.1.3. Exponential Tree Sorting v/s Quick Sort 

The figure-5.3 shows the graph plotted between exponential tree sorting run time and 

quick sort run time. The line plot for both algorithms has a linear slope. The 

exponential tree gives better running time than quick sort for smaller number of input 

integers i.e. N. But after a particular value of N the running time of exponential tree is 

more than the quick sort. The reason behind this change is that as the number of 

integer increases new nodes in exponential tree are created. The creation of new node 

requires the use of new operators and also assigning of default values to node’s 

variables. The running time of exponential tree also includes the running time taken 

by the increment of counter at each node and shifting of integers to create space for 

new integer. Thus after a particular value of N the running time for exponential tree 

sorting is more than quick sort. 
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Figure-5.3: Exponential tree sorting v/s quick sort running time 

5.1.1.4. Running Time Result 

The figure-5.4 shows the overall comparison between all three algorithms. The graph 

clearly shows that the binary tree sorting gives worst running time among all. The 

exponential tree sorting gives a running time near to quick sort. The running time of 

exponential tree sorting is far better than the binary tree sorting. When the number of 

input integers is smaller, then the performance of quick sort and exponential tree is 

nearly same while the binary tree has a very bad performance even for small number 

of input integers. In the case of very large number of input integers, the running time 

for quick sort is slightly less than the exponential tree sorting. This is because of extra 

operation required while creation of nodes. The performance of binary tree is even 

worst for very large number of input integers. 
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Figure-5.4: CPU running time comparison 

5.1.2.  Space Requirement 

The memory used by the algorithm is measured by the Windows Task Manager. The 

algorithm is executed and the memory used is monitored and the maximum memory 

used by the algorithm during entire run is taken. Three runs are given and the 

maximum memory used is noted. The memory requirements are measured in KB 

(Kilo Bytes). 

Table-5.2: Memory requirement 

N Log N Binary Tree Exp Tree 

1024 10 492 500 

2048 11 568 572 

4096 12 712 736 

8192 13 996 1032 

16384 14 1572 1668 
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32768 15 2724 2852 

65536 16 5036 5008 

131072 17 9656 8528 

262144 18 18892 12860 

524288 19 37368 20404 

1048576 20 74312 34320 

2097152 21 148208 59268 

4194304 22 296012 102956 

8388608 23 591596 176260 

16777216 24 1182784 302908 

 

5.1.2.1. Analysis of Exponential Tree Sorting Space Requirement 

The figure-5.5 shows the memory requirement plot for the exponential tree which 

depicts that the graph has a linear slope. The memory requirement increases directly 

proportional to number of integers to be sorted. The memory used by exponential tree 

includes the memory for pointers created for children, the track of number of integers 

present in the node, depth or height of the node and the array used for storing the key 

values of the node. The memory requirement for the exponential tree is comparatively 

low. 

It can be seen from the plot that the memory used by the exponential tree sort is linear 

as the slope of plot is linear. This proves the result that the modified design does 

integer sorting in linear space. The linear space requirement is best in nature as not 

more than a specific memory is required to perform the sorting operation. Thus, the 

algorithm has a good and optimized space requirement. 
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Figure-5.5: Memory requirement plot for exponential tree sorting. 

5.1.2.2. Exponential Tree Sorting v/s Binary Tree Sorting 

The figure-5 shows the comparison of memory requirements for exponential tree 

sorting and binary tree sorting which depicts that the exponential tree uses very less 

memory as compared to binary tree. The reason for less memory used by exponential 

tree is that binary tree uses two pointers with each node or each integer as there is 

always on integer present in binary tree node, whereas exponential tree uses 𝑚 + 1 

pointers with 𝑚 integers as there is 𝑚 integers are presented in exponential tree node. 

The difference of memory used by exponential tree as compared to the binary tree is 

very high even for very large number of input integers. This shows that the space 

requirement of exponential tree sorting is far better than the binary tree sorting. Hence 

the optimization in space requirement is achieved relatively. 
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Figure-5.6: Memory requirement comparison 

5.2. Results 

The figure-5.7 shows the trial run of the algorithm. First the number of input integers 

is scanned from the file. After that all input integers are scanned one at a time and 

inserted into the modified exponential tree. This will reduce the requirement of 

maintaining list of input integers as integers are directly inserted into the tree. The 

passing of integers one at a time provides this feature. 

After all integers are inserted, due to properties of modified exponential tree all 

integers will be in sorted sequence. The in-order trace of the tree will give the desired 

sorted output. This is also shown in figure-5.7. Hence the algorithm successfully runs 

and provides the integer sorting. 



 

Page | 38  
 

 

Figure-5.7: Output 
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Chapter-6 

Conclusion and Future Scope 

 

6.1. Conclusion 

This thesis has presented a different idea to achieve the complexity of deterministic 

algorithm for integer sorting in 𝑂 𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 log log log 𝑛  expected time and linear 

space with conservative advantage. This algorithm is easy to implement and simple. 

In order to achieve this complexity, the data structure used is exponential tree which 

has been modified to simplify the design and implementation. The idea has been 

inherited from Andersson’s exponential tree. 

The exponential tree presented in this thesis has a simple layout. The modified design 

is not only easy to understand but also simple to implement. The main focus of 

modified design is on to handle as many integers as possible with simple layout. The 

new design has achieved the optimized height and complexity associated with 

insertion. The height of the new data structure is 𝑂 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛   which is very 

fascinating. It is also proved that the design is also optimized for memory usage. It 

requires less memory than its counterparts. 

The integer sorting is performed in  𝑂  𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛 log log  𝑛   expected time in linear 

space using exponential tree. In order to achieve this expected time, the algorithm has 

used binary search with little modification with exponential tree. The basic concept of 

binary search is not modified but it is used according to requirements. Instead of 

searching the position of a key it searches for the successor of the key so that key can 

be inserted before it. 

The implementation has shown that the algorithm has a very good performance on 

both criteria of running time as well as memory requirements. It has competing 

performance with quick sort for running time and far better than the binary tree 

sorting. The memory requirements of exponential tree sorting is also very less as 
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compared to binary tree sorting. It is needless to say that the exponential tree sorting 

is more preferable to binary tree sorting. 

6.2. Future Scope 

The true lower bound for integer sorting is not 𝑂(𝑛𝑙𝑜𝑔𝑙𝑜𝑔𝑛) but it is still to be 

proved. Work can be done to further optimized complexity to achieve lower bound for 

integer sorting. This will require lots of efforts and may be achieved using 

randomized algorithms. The implementation of new concept with better performance 

or with expected performance is also a challenging task which is required to be 

worked upon. 

This complexity is theoretically achieved using exponential tree. This might be 

achieved using any other data structure that can provide better time complexity than 

exponential tree. The new data structure, which may be proposed, can be having 

simple layout and design. It is also a challenging task to produce new data structure 

especially for integer sorting purpose. 

  



 

Page | 41  
 

References 

 

[1] Fredman M. L., and Willard D. E., Surpassing the information theoretic bound 

with fusion trees, J. Comput. System Sci., vol. 47, pp. 424-436, 1994. 

[2] Andersson A., Hagerup T., Nilsson S., and Raman R., Sorting in linear time?, 

J. Comput. Syst. Sci., vol. 57, no. 1, pp. 74-93, 1998. 

[3] Andersson A., Fast deterministic sorting and searching in linear space, in 

“Proc. 1996 IEEE Symp. on Foundations of Computer Science,” pp. 135-141, 

1996. 

[4] Thorup M., Fast deterministic sorting and priority queues in linear space, in 

“Proc. 1998 ACM-SIAM Symp. on Discrete Algorithms (SODA’98),” pp. 

550-555, 1998. 

[5] Han Y., Fast integer sorting in linear space in “Proc. Symp. Theoretical 

Aspects of Computing (STACS’2000), February 2000,” Lecture Notes in 

Computer Science, vol. 1170, pp. 242-253, 2000. 

[6] Y. Han, Improved fast integer sorting in linear space, Inform. and Comput., 

vol. 170, no.1, pp. 81–94, 2001. 

[7] Y. Han, Deterministic sorting in 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)  time and linear space, 

Journal of Algorithms, vol. 50, no. 1, January 2004, pp. 96-105, 2004. 

[8] Michael A. Bender , Richard Cole , Rajeev Raman, Exponential Structures for 

Efficient Cache-Oblivious Algorithms, Proceedings of the 29th International 

Colloquium on Automata, Languages and Programming, pp. 195-207, July 08-

13, 2002. 

[9] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein: Introduction to 

Algorithms, Second Edition,The MIT Press and McGraw-Hill Book Company, 

2001. 

[10] Thorup M., Randomized sorting in 𝑂(𝑛 𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛)  time and linear space 

using addition, shift, and bit-wise Boolean operations, in “Proc. 8th ACM-

SIAM Symp. on Discrete Algorithms (SODA’97),” pp. 352-359, 1997. 

[11] Albers S., and Hagerup T., Improved parallel integer sorting without 

concurrent writing, Information and Comput., vol. 136, pp. 25-51, 1997. 



 

Page | 42  
 

[12] Hagerup T., and Shen H., Improved nonconservative sequential and parallel 

integer sorting, Inform. Process. Lett., vol. 36, pp. 57-63, 1990. 

[13] Han Y., and Shen X., Conservative algorithms for parallel and sequential 

integer sorting, in “Proc. 1995 International Computing and Combinatorics 

Conference, August 1995,” Lecture Notes in Computer Science, vol. 959, pp. 

324-333, 1995. 

[14] Bhatt P. C. P., Diks K., Hagerup T., Prasad V. C., Radzik T., and Saxena S., 

Improved deterministic parallel integer sorting, Inform. and Comput., vol. 94, 

pp. 29-47, 1991. 

[15] Hagerup T., Towards optimal parallel bucket sorting, Inform. and Comput., 

vol. 75, pp. 39-51, 1987. 

[16] Han Y., and Shen X., Parallel integer sorting is more efficient than parallel 

comparison sorting on exclusive write PRAMs, in “Proc. 1999 Tenth Annual 

ACM-SIAM Symposium on Discrete Algorithms (SODA’99), Baltimore, 

Maryland, January 1999,” pp. 419-428, 1999. 

[17] Kruskal C. P., Rudolph L., and Snir M., A complexity theory of efficient 

parallel algorithms, Theoret. Comput. Sci., vol. 71, pp. 95-132, 1990. 

[18] Leighton F. T., “Introduction to Parallel Algorithms and Architectures: 

Arrays, Trees, Hypercubes,” Morgan Kaufmann, San Mateo, CA, 1992. 

[19] Rajasekaran S., and Reif J., Optimal and sublogarithmic time randomized 

parallel sorting algorithms, SIAM J. Comput., vol. 18, pp. 594-607, 1989. 

[20] Rajasekaran S., and Sen S., On Parallel integer sorting, Acta Inform., vol. 29, 

pp. 1-15, 1992. 

[21] Vaidyanathan R., Hartmann C. R. P., and Varshney P. K., Towards optimal 

parallel radix sorting, in “Proc. 7th International Parallel Processing 

Symposium,” pp. 193-197, 1993. 

[22] Wagner R. A., and Han Y., Parallel algorithms for bucket sorting and the data 

dependent prefix problem, in “Proc. 1986 International Conf. on Parallel 

Processing,” pp. 924-930, 1986. 

[23] Dessmark A., and Lingas A., Improved Bounds for Integer Sorting in the 

EREW PRAM Model, J. Parallel Distrib. Comput., vol. 48, pp. 64-70, 1998. 

[24] Kirkpatrick D., and Reisch S., Upper bounds for sorting integers on random 

access machines, Theoret. Comput. Sci., vol. 28, pp. 263-276, 1984. 



 

Page | 43  
 

[25] Raman R., Priority queues: small, monotone and trans-dichotomous, in “Proc. 

1996 European Symp. on Algorithms,” Lecture Notes in Computer Science, 

vol. 1136, pp. 121-137, Spinger-Verlag, Berlin/New York, 1996. 

[26] P. van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of an 

efficient priority queue, Math. Syst. Theory, vol. 10, pp. 99-127, 1977. 

[27] Y. Han, M. Thorup, Sorting integers in 𝑂 𝑛  log log 𝑛  expected time and 

linear space, IEEE Symposium on Foundations of Computer Science 

(FOCS’02), pp. 135–144, 2002. 

[28] Bender M. A., Farach-Colton M., and Mosteiro M. A., Insertion sort 

is  𝑂(𝑛 𝑙𝑜𝑔 𝑛). Theory Comput Syst vol. 39 no. 3, pp. 391–397, 2006. 

[29] Dietzfelbinger M., Hagerup T., Katajainen J., and Penttonen M., A reliable 

randomized algorithm for the closest-pair problem, J. Algorithms, vol. 25, pp. 

19-51, 1997. 

[30] Cole R., An optimally efficient selection algorithm, Inform. Process. Lett., vol. 

26, pp. 295-299, 1987/88. 

[31] Miltersen P. B., Lower bounds for union-split-find related problems on 

random access machines, in “Proc. 26th STOC,” pp. 625-634, 1994. 

  



 

Page | 44  
 

List of Publications 

 

[1] A. Singh, and D. Garg, Optimizing Integer Sorting in 𝑂(𝑛𝑙𝑜𝑔𝑙𝑜𝑔𝑛) Expected 

Time in Linear Space, International Journal of Information and Computing 

Technology, ISTAR, vol. 2, no. 1, pp. 40-44, 2011. 

[2] A. Singh, and D. Garg, Exponential tree sorting: Implementation and 

performance analysis (Communicated). 


